DEFINITION: A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}}
$$

for some integers $a_{0} \in \mathbb{Z}, a_{1}, \ldots, a_{n} \in \mathbb{Z}_{>0}$. We write $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ as shorthand for this.

An infinite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

for some integers $a_{0} \in \mathbb{Z}, a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{Z}_{>0}$. We write $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ as shorthand for this.

By a continued fraction we mean either an infinite or finite continued fraction. We call the numbers a_{i} the partial quotients in the continued fraction.
(1) Evaluating finite continued fractions:
(a) Evaluate $2+\frac{1}{13+\frac{1}{2}}$.
(b) Evaluate $[3 ; 2,1,4]$
(c) Explain why every finite continued fraction evaluates to a rational number.
(2) Using the Euclidean algorithm to compute finite continued fractions:
(a) What type of computation is the computation below?

$$
\begin{aligned}
250 & =2 \cdot 117+16 \\
117 & =7 \cdot 16+5 \\
16 & =3 \cdot 5+1 \\
5 & =5 \cdot 1
\end{aligned}
$$

(b) How does one obtain $\frac{250}{117}=2+\frac{1}{\frac{117}{16}}$ from the computation above?
(c) Repeat (b) to obtain a finite continued fraction expansion for $\frac{250}{117}$.
(d) Use the steps above to obtain a finite continued fraction expansion for $\frac{7}{5}$.
(e) Use the steps above to obtain a finite continued fraction expansion for $\frac{39}{314}$.
(f) What is the general formula for the continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ for m / n in terms of the Euclidean algorithm?
(3) Euclidean algorithm and continued fraction algorithm:
(a) In the computation from (2a) above, check that

$$
2=\left\lfloor\frac{250}{117}\right\rfloor \text { and that } \frac{117}{16}=\left(\frac{250}{117}-\left\lfloor\frac{250}{117}\right\rfloor\right)^{-1} .
$$

(b) More generally, in the Euclidean algorithm

$$
\begin{array}{cccr}
\vdots & \vdots & \vdots & \vdots \\
u_{i} & =q_{i} \cdot v_{i}+r_{i} & \left(u_{i+1}=v_{i}\right) \\
u_{i+1} & =q_{i+1} \cdot v_{i+1}+r_{i+1} & \left(v_{i+1}=r_{i}\right)
\end{array}
$$

show that

$$
q_{i}=\left\lfloor\frac{u_{i}}{v_{i}}\right\rfloor \text { and } \frac{u_{i+1}}{v_{i+1}}=\left(\frac{u_{i}}{v_{i}}-\left\lfloor\frac{u_{i}}{v_{i}}\right\rfloor\right)^{-1} .
$$

DEfinition: Given an infinite continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, the k-th convergent of the continued fraction is the value C_{k} of the finite continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$.

THEOREM (CONVERGENCE OF CONTINUED FRACTIONS): Every infinite continued fraction converges to a real number; i.e., for any $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{1}, a_{2}, \ldots \in \mathbb{Z}_{>0}$, the sequence of convergents $C_{1}, C_{2}, C_{3}, \ldots$ converges. We call this limit the value of the infinite continued fraction.

Continued Fraction Algorithm: Given a real number r,
(I) Start with $\beta_{0}:=r$ and $n:=0$.
(II) Set $a_{n}:=\left\lfloor\beta_{n}\right\rfloor$.
(III) If $a_{n}=\beta_{n}$, STOP; the continued fraction is $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$.

Else, set $\beta_{n+1}:=\left(\beta_{n}-a_{n}\right)^{-1}$, and return to Step (II).
If the algorithm does not terminate, the continued fraction is $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.
Theorem (Correctness of Continued Fraction Algorithm): For any real number r, the continued fraction obtained from the Continued Fraction Algorithm with input r converges to r.

Proposition: Let r be a real number. The Continued Fraction Algorithm with input r terminates in finitely many steps if and only if r is rational.

Dirichlet Approximation Theorem: Let $r=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ be a real number. Then for every convergent $C_{k}=\frac{p_{k}}{q_{k}}$ (in lowest terms), we have $\left|r-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k}^{2}}$.

In particular, if r is irrational, there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$.
(4) Use the continued fraction algorithm to find the first four ($n \leq 3$) partial quotients and convergents for $\sqrt{2}$, and π. Can you find the whole continued fraction for either of these?
(5) Find 1 the value of the continued fraction $1+\frac{1}{1+\frac{1}{1+\frac{1}{\ddots}}}$.
(6) Continued fraction algorithm and rational numbers.
(a) Explain why the continued fraction algorithm just creates a continued fraction in the same way the Euclidean algorithm does as we did in problem (2).
(b) Explain why the Proposition above is true.
(7) Dirichlet Approximation Theorem.
(a) Let r be any real number. Explain why for any positive integer q, there is some integer p such that $\left|r-\frac{p}{q}\right|<\frac{1}{q}$. Conclude that $\left|r-\frac{p}{q}\right|<\frac{1}{q}$ is "not very impressive".
(b) For $r=\sqrt{2}$, find all rational numbers p / q with $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$ with $q \leq 6$ and compare to the list of convergents C_{0}, C_{1}, C_{2}. What about $\left|r-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$? Conclude that $\left|r-\frac{p}{q}\right|<\frac{1}{q^{2}}$ is "pretty impressive".
(c) Discuss $\pi \approx \frac{22}{7}$ in the context of the results above. Give a better approximation.

[^0]Proposition: Let $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ be a continued fraction. Set

$$
\begin{aligned}
p_{0}:=a_{0}, & p_{1}:=a_{0} a_{1}+1, & & p_{k}:=a_{k} p_{k-1}+p_{k-2} \\
q_{0}:=1, & q_{1}:=a_{1}, & & q_{k}:=a_{k} q_{k-1}+q_{k-2} .
\end{aligned}
$$

Then,
(1) $C_{k}=\frac{p_{k}}{q_{k}}$ for all $k \geq 0$, and
(2) $p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}$ for all $k \geq 1$.
(8) Proof of convergence Theorem and Dirichlet Approximation Theorem.
(a) Use the Proposition above to show that $C_{k}-C_{k-1}=\frac{(-1)^{k-1}}{q_{k} q_{k-1}}$ for all $k \geq 1$.
(b) Use the Proposition above to show that $C_{k}-C_{k-2}=\frac{(-1)^{k} a_{k}}{q_{k} q_{k-2}}$ for all $k \geq 2$.
(c) Use (8b) to show that the sequence $C_{0}, C_{2}, C_{4}, \ldots$ is increasing, that the sequence $C_{1}, C_{3}, C_{5}, \ldots$ is decreasing; use (8a) to show that $C_{2 k}<C_{2 \ell+1}$ for all k, ℓ. Deduce that $\lim _{k \rightarrow \infty} C_{2 k}=$ $\sup \left\{C_{2 k} \mid k \in \mathbb{N}\right\}$ and $\lim _{\ell \rightarrow \infty} C_{2 \ell+1}=\inf \left\{C_{2 \ell+1} \mid \ell \in \mathbb{N}\right\}$ both exist.
(d) Use (8a) to show that $\sup \left\{C_{2 k} \mid k \in \mathbb{N}\right\}=\inf \left\{C_{2 \ell+1} \mid \ell \in \mathbb{N}\right\}$, and hence that $\lim _{n \rightarrow \infty} C_{n}$ exists and is equal to both of these values. Thus, every continued fraction converges.
(e) Suppose that β is the value of our continued fraction. Use (8d) to show that $\left|\beta-C_{n}\right| \leq\left|C_{n+1}-C_{n}\right|$, and use (8a) to deduce Dirichlet's Approximation.
(9) Prove the Proposition above.
(10) Proof of Correctness of Continued Fraction Algorithm:

If r is rational, the algorithm terminates and returns r, so we can assume that r is irrational and that the algorithm does not terminate. Given r, let $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ and $\beta_{0}, \beta_{1}, \beta_{2}, \ldots$ be the sequences arising from the continued fraction algorithm.
(a) Explain why $r=\left[a_{0} ; a_{1}, \ldots, a_{k}, \beta_{k+1}\right]$. (Note, β_{k+1} is not an integer, but we can plug it into a finite continued fraction anyway.)
(b) Explain why $r=\frac{\beta_{k+1} p_{k}+p_{k-1}}{\beta_{k+1} q_{k}+q_{k-1}}$ where p_{k}, q_{k}, where p_{k}, q_{k} are the numbers coming from the continued fraction (with an irrational number snuck in) $\left[a_{0} ; a_{1}, \ldots, a_{k}, \beta_{k+1}\right]$ as in the Proposition above.
(c) Show that $\left|r-C_{k}\right|<\frac{1}{q_{k} q_{k+1}}$ for all $k \geq 1$ and deduce the result.
(11) Prove the following theorem, which basically says that the convergents are the best approximations of a rational number.
THEOREM: Let r be a real number, $C_{k}=\frac{p_{k}}{q_{k}}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number. If $q \leq q_{k}$, then $\left|r-\frac{p}{q}\right| \geq\left|r-\frac{p_{k}}{q_{k}}\right|$.

[^0]: ${ }^{1}$ Hint: This limit has a value L. Find an equation that L satisfies by recognizing L as a smaller piece of this continued fraction.

