DEFINITION: A finite continued fraction is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_n}}}}$$

for some integers $a_0 \in \mathbb{Z}, a_1, \ldots, a_n \in \mathbb{Z}_{>0}$. We write $[a_0; a_1, \ldots, a_n]$ as shorthand for this.

By a **continued fraction** we mean either an infinite or finite continued fraction. We call the numbers a_i the partial quotients in the continued fraction.

(1) Evaluating finite continued fractions:

(a) Evaluate
$$2 + \frac{1}{13 + \frac{1}{2}}$$

- (b) Evaluate [3; 2, 1, 4]
- (c) Explain why every finite continued fraction evaluates to a rational number.
- (2) Using the Euclidean algorithm to compute finite continued fractions:
 - (a) What type of computation is the computation below?

$$250 = 2 \cdot 117 + 16$$

$$117 = 7 \cdot 16 + 5$$

$$16 = 3 \cdot 5 + 1$$

$$5 = 5 \cdot 1$$

- (b) How does one obtain $\frac{250}{117} = 2 + \frac{1}{\frac{117}{16}}$ from the computation above?
- (c) Repeat (b) to obtain a finite continued fraction expansion for $\frac{250}{117}$.

- (d) Use the steps above to obtain a finite continued fraction expansion for $\frac{7}{5}$. (e) Use the steps above to obtain a finite continued fraction expansion for $\frac{39}{314}$. (f) What is the general formula for the continued fraction $[a_0; a_1, \ldots, a_n]$ for m/n in terms of the Euclidean algorithm?

(3) Euclidean algorithm and continued fraction algorithm:

(a) In the computation from (2a) above, check that

$$2 = \left\lfloor \frac{250}{117} \right\rfloor \text{ and that } \frac{117}{16} = \left(\frac{250}{117} - \left\lfloor \frac{250}{117} \right\rfloor \right)^{-1}$$

(b) More generally, in the Euclidean algorithm

show that

$$q_i = \left\lfloor \frac{u_i}{v_i} \right\rfloor$$
 and $\frac{u_{i+1}}{v_{i+1}} = \left(\frac{u_i}{v_i} - \left\lfloor \frac{u_i}{v_i} \right\rfloor \right)^{-1}$

An infinite continued fraction is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1$$

for some integers $a_0 \in \mathbb{Z}, a_1, a_2, a_3, \ldots \in \mathbb{Z}_{>0}$. We write $[a_0; a_1, a_2, ...]$ as shorthand for this.

DEFINITION: Given an infinite continued fraction $[a_0; a_1, a_2, ...]$, the *k*-th **convergent** of the continued fraction is the value C_k of the finite continued fraction $[a_0; a_1, ..., a_k]$.

THEOREM (CONVERGENCE OF CONTINUED FRACTIONS): Every infinite continued fraction converges to a real number; i.e., for any $[a_0; a_1, a_2, a_3, \ldots]$ with $a_0 \in \mathbb{Z}$ and $a_1, a_2, \ldots \in \mathbb{Z}_{>0}$, the sequence of convergents C_1, C_2, C_3, \ldots converges. We call this limit the value of the infinite continued fraction.

CONTINUED FRACTION ALGORITHM: Given a real number r,

- (I) Start with $\beta_0 := r$ and n := 0.
- (II) Set $a_n := \lfloor \beta_n \rfloor$.
- (III) If $a_n = \beta_n$, STOP; the continued fraction is $[a_0; a_1, \dots, a_n]$. Else, set $\beta_{n+1} := (\beta_n - a_n)^{-1}$, and return to Step (II).

If the algorithm does not terminate, the continued fraction is $[a_0; a_1, a_2, ...]$.

THEOREM (CORRECTNESS OF CONTINUED FRACTION ALGORITHM): For any real number r, the continued fraction obtained from the Continued Fraction Algorithm with input r converges to r.

PROPOSITION: Let r be a real number. The Continued Fraction Algorithm with input r terminates in finitely many steps if and only if r is rational.

DIRICHLET APPROXIMATION THEOREM: Let $r = [a_0; a_1, a_2, a_3, ...]$ be a real number. Then for every convergent $C_k = \frac{p_k}{q_k}$ (in lowest terms), we have $\left|r - \frac{p_k}{q_k}\right| < \frac{1}{q_k^2}$. In particular, if r is irrational, there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|r - \frac{p}{q}\right| < \frac{1}{a^2}$.

(4) Use the continued fraction algorithm to find the first four $(n \le 3)$ partial quotients and convergents for

- $\sqrt{2}$, and π . Can you find the whole continued fraction for either of these?
- (5) Find¹ the value of the continued fraction $1 + \frac{1}{1 + \frac{1$
- (6) Continued fraction algorithm and rational numbers.
 - (a) Explain why the continued fraction algorithm just creates a continued fraction in the same way the Euclidean algorithm does as we did in problem (2).
 - (b) Explain why the Proposition above is true.
- (7) Dirichlet Approximation Theorem.
 - (a) Let r be any real number. Explain why for any positive integer q, there is some integer p such that $|r \frac{p}{q}| < \frac{1}{q}$. Conclude that $|r \frac{p}{q}| < \frac{1}{q}$ is "not very impressive".
 - (b) For $r = \sqrt{2}$, find all rational numbers p/q with $|r \frac{p}{q}| < \frac{1}{q^2}$ with $q \le 6$ and compare to the list of convergents C_0, C_1, C_2 . What about $|r \frac{p}{q}| < \frac{1}{2q^2}$? Conclude that $|r \frac{p}{q}| < \frac{1}{q^2}$ is "pretty impressive".
 - (c) Discuss $\pi \approx \frac{22}{7}$ in the context of the results above. Give a better approximation.

¹Hint: This limit has a value L. Find an equation that L satisfies by recognizing L as a smaller piece of this continued fraction.

PROPOSITION: Let $[a_0; a_1, a_2, ...]$ be a continued fraction. Set

$$p_0 := a_0, \qquad p_1 := a_0 a_1 + 1, \quad p_k := a_k p_{k-1} + p_{k-2}$$
$$q_0 := 1, \qquad q_1 := a_1, \qquad q_k := a_k q_{k-1} + q_{k-2}.$$

Then,

- (1) $C_k = \frac{p_k}{q_k}$ for all $k \ge 0$, and
- (2) $p_k q_{k-1} p_{k-1} q_k = (-1)^{k-1}$ for all $k \ge 1$.
- (8) Proof of convergence Theorem and Dirichlet Approximation Theorem.
 - (a) Use the Proposition above to show that C_k C_{k-1} = (-1)^{k-1}/(q_kq_{k-1}) for all k ≥ 1.
 (b) Use the Proposition above to show that C_k C_{k-2} = ((-1)^ka_k)/(q_kq_{k-2}) for all k ≥ 2.
 (c) Use (8b) to show that the sequence C₀, C₂, C₄, ... is increasing, that the sequence C₁, C₃, C₅, ...
 - (c) Use (8b) to show that the sequence C_0, C_2, C_4, \ldots is increasing, that the sequence C_1, C_3, C_5, \ldots is decreasing; use (8a) to show that $C_{2k} < C_{2\ell+1}$ for all k, ℓ . Deduce that $\lim_{k\to\infty} C_{2k} = \sup\{C_{2k} | k \in \mathbb{N}\}$ and $\lim_{\ell\to\infty} C_{2\ell+1} = \inf\{C_{2\ell+1} | \ell \in \mathbb{N}\}$ both exist.
 - (d) Use (8a) to show that $\sup\{C_{2k} | k \in \mathbb{N}\} = \inf\{C_{2\ell+1} | \ell \in \mathbb{N}\}\)$, and hence that $\lim_{n\to\infty} C_n$ exists and is equal to both of these values. Thus, every continued fraction converges.
 - (e) Suppose that β is the value of our continued fraction. Use (8d) to show that $|\beta C_n| \le |C_{n+1} C_n|$, and use (8a) to deduce Dirichlet's Approximation.
- (9) Prove the Proposition above.
- (10) Proof of Correctness of Continued Fraction Algorithm:

If r is rational, the algorithm terminates and returns r, so we can assume that r is irrational and that the algorithm does not terminate. Given r, let $a_0, a_1, a_2, a_3, \ldots$ and $\beta_0, \beta_1, \beta_2, \ldots$ be the sequences arising from the continued fraction algorithm.

- (a) Explain why $r = [a_0; a_1, \dots, a_k, \beta_{k+1}]$. (Note, β_{k+1} is not an integer, but we can plug it into a finite continued fraction anyway.)
- (b) Explain why $r = \frac{\beta_{k+1}p_k + p_{k-1}}{\beta_{k+1}q_k + q_{k-1}}$ where p_k, q_k , where p_k, q_k are the numbers coming from the continued fraction (with an irrational number snuck in) $[a_0; a_1, \ldots, a_k, \beta_{k+1}]$ as in the Proposition above.
- (c) Show that $|r C_k| < \frac{1}{q_k q_{k+1}}$ for all $k \ge 1$ and deduce the result. Prove the following theorem which have |l|
- (11) Prove the following theorem, which basically says that the convergents are the *best* approximations of a rational number.

THEOREM: Let r be a real number, $C_k = \frac{p_k}{q_k}$ be the k-th convergent of r, and $\frac{p}{q} \neq r$ be a rational number. If $q \leq q_k$, then $\left| r - \frac{p}{q} \right| \geq \left| r - \frac{p_k}{q_k} \right|$.