Definition: A triple (a, b, c) of natural numbers is a Pythagoran triple if they form the side lengths of a right triangle, where c is the length of the hypotenuse.

$(3,4,5)$ is a Pythagorean triple.

Our goal today is to find all Pythagoran triples. We will use a couple of tools that whose relevance might not be clear at first:

Fundamental Theorem of Arithmetic: Every natural number $n \geq 1$ can be written as a product of prime numbers:

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} .
$$

This expression is unique up to reordering.
We call the number e_{i} the multiplicity of the prime p_{i} in the prime factorization of n.
DEFINITION: Let m, n be integers and $K \geq 1$ be a natural number. We say that m is congruent to n modulo K, written as $m \equiv n(\bmod K)$, if $m-n$ is a multiple of K.

THEOREM: Let n be an integer and $K \geq 1$ a natural number. Then n is congruent to exactly one nonnnegative integer between 0 and $K-1$: this number is the "remainder" when you divide n by K.

PROPOSITION: Let $m, m^{\prime}, n, n^{\prime}$ and K be natural numbers. Suppose that

$$
m \equiv m^{\prime} \quad(\bmod K) \quad \text { and } \quad n \equiv n^{\prime} \quad(\bmod K)
$$

Then

$$
m+n \equiv m^{\prime}+n^{\prime} \quad(\bmod K) \quad \text { and } \quad m n \equiv m^{\prime} n^{\prime} \quad(\bmod K)
$$

(1) Without writing too much, use the picture below to deduce the

Pythagorem Thorem: If a, b, c are the side lengths of a right triangle, where c is the length of the hypotenuse, then $a^{2}+b^{2}=c^{2}$.

(2) Creating Pythagorean triples from others:
(a) Show that if (a, b, c) is a Pythagorean triple and d is a natural number, then $(d a, d b, d c)$ is a Pythagorean triple. Deduce that there are infinitely many Pythagorean triples.
(b) Show that if (a, b, c) is a Pythagorean triple and d is a common factor of a, b, and c, then $(a / d, b / d, c / d)$ is a Pythagorean triple.

Definition: A triple (a, b, c) of natural numbers is a primitive Pythagoran triple (PPT) if $a^{2}+b^{2}=c^{2}$, and there is no common factor of a, b, c greater than 1 ; equivalently, a, b, c have no common prime factor.

Based on (1) and (2), finding all Pythagorean triples boils down to finding all PPTs.
(3) Let a be a natural number. Show that if a is even, then $a^{2} \equiv 0(\bmod 4)$, and if a is odd, then $a^{2} \equiv 1(\bmod 4)$.
(4) Suppose that (a, b, c) is a Pythagorean triple. We want to examine the parity (even vs. odd) of the numbers a, b, c.
(a) Suppose that a and b are both even. Show that c is even too. Deduce that there are no PPTs with a and b both even.
(b) Suppose now that a and b are both odd. Consider the equation $a^{2}+b^{2}=c^{2}$ modulo 4, and use the problem (3) to get a contradiction.
(c) Conclude that if (a, b, c) is a PPT, then one of a, b is odd, and the other is even, and that c is odd.
(5) Let m and n be natural numbers.
(a) Show that n is a perfect square if and only if the multiplicity of each prime in its prime factorization is even.
(b) Suppose that m and n have no common prime factors. Show that if $m n$ is a perfect square, then m and n are both perfect squares.
(6) Consider a PPT (a, b, c). Following (4c), without loss of generality we can assume that a is odd and b is even. Rewrite the equation $a^{2}+b^{2}=c^{2}$ as $a^{2}=c^{2}-b^{2}$.
(a) By definition, there is no prime factor common to all three of a, b, and c. Show that there is no prime factor common to just b and c.
(b) Factor $c^{2}-b^{2}$ as $(c-b)(c+b)$. Show that ${ }^{1}$ there is no prime factor common to $c-b$ and $c+b$.
(c) Show that $c-b$ and $c+b$ are perfect squares.
(d) Show ${ }^{2}$ that any PPT can be written in the form

$$
(a, b, c)=\left(s t, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}\right)
$$

for some odd integers $s>t \geq 1$ with no common factors.
(e) Check the other direction: show that any triple of the form $\left(s t, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}\right)$, where $s>t \geq 1$ are odd integers with no common factors, is a PPT.

[^0]You have proven the following:

Theorem: The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

$$
a=s t, \quad b=\frac{s^{2}-t^{2}}{2}, \quad c=\frac{s^{2}+t^{2}}{2},
$$

where $s>t \geq 1$ are odd integers with no common factors.

These mysterious formulas have a geometric explanation.

(7) (a) Show that if (a, b, c) is a Pythagorean triple, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is a point on the circle with positive rational coordinates, and vice versa.
(b) Given a rational number $v>1$, the line L through $(0,1)$ and $(v, 0)$ intersects the unit circle in two points (one of which is $(0,1)$). As a first step towards finding this point, find an equation for L.
(c) Use the equation you found in (7b) and the equation for the unit circle to solve for x and y in terms of v.
(d) Use (b) to solve for v in terms of x and y and this to show that if x and y are rational, then v is rational.
Conclude the following theorem:

THEOREM: The set of points on the unit circle $x^{2}+y^{2}=1$ with positive rational coordinates is given by the formula

$$
(x, y)=\left(\frac{2 v}{v^{2}+1}, \frac{v^{2}-1}{v^{2}+1}\right)
$$

where v ranges through rational numbers greater than one.
(e) Take the expressions for x and y from the Theorem above in terms of v, and plug in $v=s / t$ and simplify each expression for x and y into a single fraction.
(f) Plug these expressions back into $x^{2}+y^{2}=1$, clear denominators, and divide through by 4 . What do you notice?
(8) Use similar techniques ${ }^{3}$ to find rational points on:
(a) The circle $x^{2}+y^{2}=2$.
(b) The hyperbola $x^{2}-y^{2}=1$.
(c) The hyperbola $x^{2}-2 y^{2}=1$.
(d) The circle $x^{2}+y^{2}=3$.
(9) Use this to find integer solutions (a, b, c) to the equations:
(a) The circle $a^{2}+b^{2}=2 c^{2}$.
(b) The hyperbola $a^{2}-b^{2}=c^{2}$.
(c) The hyperbola $a^{2}-2 b^{2}=c^{2}$.
(d) The circle $a^{2}+b^{2}=3 c^{2}$.

Are these all of the integer solutions?

Key Points:

- Using the Fundamental Theorem of Arithmetic for basic divisibility arguments.
- Definition of congruence, and using congruences to rule out solutions of equations.
- Using geometry to find rational points.

[^1]
[^0]: ${ }^{1}$ Hint: If there is a (prime) number that divides these, it divides their sum and difference too.
 ${ }^{2}$ Hint: Start with writing $c+b=s^{2}, c-b=t^{2}$ and solve for a, b, c.

[^1]: ${ }^{3}$ Hint: You many have to change your starting point and/or target line. You might find it useful to take new coordinates in which your starting point is the origin, i.e., $x^{\prime}=x-a, y^{\prime}=y-b$ if your starting point is (a, b).

