
RSA ENCRYPTION AND PRIME FACTORIZATION

People have needed to communicate information secretly for almost as long as we’ve been around. We
can easily see how this can benefit finance or military, but it’s even used in our day-to-day as computers
communicate with each other. The earliest form of cryptography used what are known as symmetric-key
ciphers, where two parties had access to a secret key that could both encrypt and decrypt messages. Of course,
this requires the parties to have a way to communicate secretly in the first place. As technology advanced, the
need for more sophisticated methods became necessary.

The RSA Cryptosystem—named after Ron Rivest, Adi Shamir, and Len Adleman, the first to publish1 this
method—is what is known as a asymmetric-key cipher, where everyone is allowed to encrypt with the public
key, but only the holder of the private key can decrypt, making it great for one-way communications! While
relatively new, it is built on notions, theorems, and work that has long existed in mathematics (we’ve covered
most of it in class!).

RECALL: The unit group of n is the set Z×
n := {a ∈ Zn | a is a unit in Zn}.

RECALL: Euler’s phi function satisfies the following properties:
(1) If p is prime and n is a positive integer, then ϕ(pn) = p(n−1)(p− 1).
(2) If m,n are positive coprime integers, then ϕ(mn) = ϕ(m)ϕ(n).

(1) Generating an RSA Key:
(a) Let p = 47 and q = 59. Calculate n = pq and find ϕ(n).
(b) Let e = 17. Explain why e has an inverse modulo ϕ(n).
(c) Find d = e−1 (mod ϕ(n)).

(a) n = 47 · 59 = 2773. By the proposition, ϕ(2773) = ϕ(47) ·ϕ(59) = (47− 1)(59− 1) = 2668.
(b) 17 has an inverse modulo ϕ(n) if and only if gcd(17, ϕ(n)) = 1. 17 is prime, and 17 does not

divide 2668, so 17 has an inverse.
(c) We apply the Euclidean Algorithm to find the inverse of 17:

2668 = 17 · 156 + 16

17 = 16 · 1 + 1

Thus we find after algebra that 1 = 17 · 157 + 2668(−1), and so d = 157.

(2) Encoding and Encrypting:
(a) Encode the message “HI” into an integer m by converting the letters into numbers according to

the table below and concatenating them in order.2

A B C D E F G H
00 01 02 03 04 05 06 07 08
I J K L M N O P Q

09 10 11 12 13 14 15 16 17
R S T U V W X Y Z
18 19 20 21 22 23 24 25 26

(b) Find y ≡ me (mod n).

1Clifford Cocks, an English mathematician, had actually developed a version of this four years prior, but he didn’t think it was worth
publishing!
2For example, “DOG” becomes 041507 = 41507.



(a) H = 08 and I = 09, so our integer is 809.
(b) 80917 ≡ 522 (mod 2773). If we wish to do this by hand, we could first calculate 8092

(mod 2773), then 8094, 8098, 80916, and finally 80917.

(3) Decoding and Decrypting:
(a) Find x ≡ yd (mod n) using any techniques3 from class.
(b) Decode x into a message by reversing the encoding in (2a).
(c) Explain why med ≡ m (mod n).
(d) Encode the message “CAT” as an integer m, then find and compare y ≡ m17 (mod 2773) and

x ≡ y157 (mod 2773). Explain why x ̸= m.

(a) We can use the Chinese Remainder Theorem to solve the system of congruences:

x ≡ 522157 (mod 47)

x ≡ 522157 (mod 59)

(since this forms a unique congruence class modulo n.) We can reduce 522 modulo 47 and 59
to 5 and 50 respectively; we also know that ϕ(47) = 46 and ϕ(59) = 58, and that 546 ≡ 1
(mod 46) and 5058 ≡ 1 (mod 59). Thus we can instead solve:

x ≡ 519 (mod 47)

x ≡ 5041 (mod 59)

We can solve this system of congruences using techniques from class and find x = 809.
(b) This decodes into the original “HI”.
(c) Since ed ≡ 1 (mod ϕ(n)), ed = ϕ(n) · k + 1 for some integer k. Recall by Euler’s Theorem

that aϕ(n) ≡ 1 (mod n), so we have med ≡ mϕ(n)·k+1 ≡ mϕ(n)·k ·m ≡ 1k ·m ≡ m (mod n).
(d) The result is 88. Actually, x ≡ m (mod n), but since m ≥ n, m ̸= x.

(4) Creating your own key-pair:
(a) Choose two large primes and compute n = p · q and ϕ(n).
(b) Choose any 0 < e < ϕ(n) in Z×

n .
(c) Write your n and e on the board; these make up your public key.
(d) Find d = e−1 (mod ϕ(n)).

Results depend on choice of primes p and q and public key e.

(5) Sending messages4:
(a) Find another group to exchange messages with. Come up with a message m and encrypt it using

that group’s n and e. Write your encrypted message on the board.
(b) Once the other group has written their encrypted message for you on the board, decrypt it and see

what they sent.
(c) Pick any group’s message on the board and see if you can decrypt it, using any techniques. What

do you need to know before you can decrypt the message?

Results depend on choice of primes p and q, public key e, and message m.
For (5c), we need to find p and q in order to determine the private key d; the specific result will

vary.

3HINT: Try using the Chinese Remainder Theorem to work with smaller numbers.
4If at any point you’re waiting, work ahead on future problems!



FACTORING METHODS

(6) Factoring by Trial Division:
(a) Let n = 1643 be the product of two primes. Factor n by brute force, i.e., attempt to divide by

each5 prime up to n.
(b) There is a $200,000 cash reward for factoring a 617-digit product of two primes. Explain why this

is unreasonable to do by Trial Division.

(a) The factors are 31 and 53.
(b) Based on prime approximations, we would expect to test roughly 10306 primes. If we could

test 1,000,000 primes per second, it would still take 10293 years!

THEOREM: If a2 ≡ b2 (mod n), then gcd(a+b, n) ·gcd(a−b, n) = n. Furthermore, if a ̸≡ ±b (mod n),
then gcd(a+ b, n) and gcd(a− b, n) are non-trivial factors of n.

(7) Factoring by the Continued Fraction Algorithm:
(a) Let n = 3053 be the product of two primes. Find the factor base of n: the set of positive primes6

qi ≤ 7 where
(
n

qi

)
= 1.

(b) Check7 that each element in the factor base is not a prime factor of n.
(c) Find the first8 5 convergents Ck =

pk
qk

of
√
n. For each of these, compute ak ≡ pk (mod n) and

bk ≡ p2k (mod n).
(d) Write each bk as a product of primes in the factor base, if possible9. Find a nonempty set of pairs

(ai, bi), . . . , (aj, bj) such that bi · · · bj is trivially a square modulo n and

ai · · · aj ̸≡ ±
√
bi · · · bj (mod n)

.
(e) Let A ≡ ai · · · aj (mod n) and B ≡

√
bi · · · bj (mod n). Calculate and compare A2 (mod n)

and B2 (mod n).
(f) Apply the Theorem, and use the Euclidean Algorithm to find the prime factors of n.

(a) The primes in range are 2, 3, 5, and 7. Of these, 3053 is a square modulo 2 and 7, thus the
factor base is {2, 7}.

(b) We can see that 2 does not divide 3053, and by the Euclidean Algorithm 3057 = 7 · 436 + 1
and is not a divisor.

(c) Apply the Continued Fraction Algorithm:
k βk αk

0
√
3053 55

1 ≈ 3.93 3
2 ≈ 1.06 1
3 ≈ 15.03 15

k βk αk

4 · · · 27
5 · · · 1
6 · · · 1

5HINT: Start by determining a reasonable upper bound for the smallest prime factor of n, and then divide and conquer.
6The upper bound of 7 was not arbitrary; 7 = ⌊e 1

2

√
ln(n) ln(ln(n))⌋.

7If an element were to be a factor of n, then we can reduce n by that factor and try again.
8This choice was arbitrary. If we wish to do this in general, we’ll take one convergent at a time until we find a solution.
9If bk isn’t possible, try −bk = (−1)pe11 pe22 · · · pekk .



We then evaluate the fractions:

C0 =
55

1
C1 =

166

3
C2 =

221

4

C3 =
3481

63
C4 =

94208

1705
C5 =

97889

1768
We then have:

k pk ak bk
0 55 55 −28
1 166 166 79
2 221 221 −7
3 3481 428 4
4 94208 2618 −61
5 97889 3046 49

(d) b1 and b4 cannot be written as a product of primes in the factor base, so we will not consider
them. Of the remainder, we have:

b0 = (−1) · 22 · 7 b2 = (−1) · 71 b3 = 22 b5 = 72

Any of the following can form trivial squares work:
i.
{ (

55, (−1 · 22 · 7)
)
,
(
221, (−1 · 7)

) }
ii. { (428, 22) }
• { (3046, 72) }: Since 3046 ≡ ±7 (mod 3053), we discard this one.

iii. { (428, 22) (3046, 72) }
•
{ (

55, (−1 · 22 · 7)
)
,
(
221, (−1 · 7)

)
, (428, 22)

}
: 28 ≡ ±28, so we discard.

•
{ (

55, (−1 · 22 · 7)
)
,
(
221, (−1 · 7)

)
, (428, 22), (3046, 72)

}
: 2857 ≡ ±196, discard.

Further solutions will consider (i), but all of them will work.
(e) With (i), we find A ≡ 2996, B ≡ 14. We confirm that A2 ≡ 196 ≡ B2 (mod 3053).
(f) The Theorem tells us that we will get nontrivial factors of 3053 by calculating gcd(A +

B, 3053) = gcd(3010, 3053) and gcd(A − B, 3053) = gcd(2982, 3053). Applying the Eu-
clidean Algorithm:

3053 = 3010 · 1 + 43 3053 = 2982 · 1 + 71

3010 = 43 · 70 2982 = 71 · 42
A quick check reveals that 43 · 71 = 3053!


