Math 445 - Problem Set \#7

Due: Tuesday, November 14 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand. If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and $3 "$. If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times. Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.
(1) Let E be a real elliptic curve. Recall that a point $P \in \bar{E}$ has order 2 if and only if P has a vertical tangent line. Prove ${ }^{1}$ that every point of order 2 in \bar{E} is a point on the x-axis, and that \bar{E} has at most three points of order 2 .
(2) Find all powers $P, 2 P, 3 P, \ldots$ of the point $P=(3,8)$ in $E: y^{2}=x^{3}-43 x+166$. You can, and may want to, use a computer graphing system to start by computing small powers.
(3) In this problem, we will prove that the elliptic curve $E: y^{2}=x^{3}+7$ has no integer solutions.
(a) Suppose that (a, b) is an integer solution. Show that a must be odd.
(b) Show that $b^{2}+1=(a+2)\left((a-1)^{2}+3\right)$.
(c) Show that there exists a prime $q \equiv 3(\bmod 4)$ that divides the integer in (b), and obtain a contradiction.

[^0]
[^0]: ${ }^{1}$ Use calculus.

