Math 445 — Problem Set #6
Due: Friday, November 3 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. If you do
work with others, I ask that you write something along the top like “I collaborated with Steven Smale
on problems 1 and 3”. If you use a reference, indicate so clearly in your solutions. In short, be intel-
lectually honest at all times. Please write neatly, using complete sentences and correct punctuation.
Label the problems clearly.

(1) Use the methods from class to give a formula' for all solutions of the Pell’s equation

2 —13y% = 1.
We use the continued fraction algorithm:
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and since /13 — 3 appears as a remainder in the first step, the continued fraction must
start repeating. That is, 13 =[3;1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,...].
We use this to generate a list of convergents ¢:
847 11 18 119 157 256 303 649
1717273757337 387 7171097 180"
and for each, we test whether a? — 13b% = 1. The first solution we get is (649, 180).
Now, by the theorem, every solution (zy,yy) arises of the form
(zr, yr) = (649 + 180V/13)*.

(2) Closed formulas for solutions to Pell’s equations.

TAs in class, in terms of coefficients powers of some a + bv/D.
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(a) Explain why the kth positive solution (zy,yx) of the Pell’s equation 22 —2y? = 1 satisfies

the equation
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(b) Diagonalize the matrix and use this to give a closed expression for (xg,yx) in
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terms of k. Your formulas should be in terms of particular linear combinations of powers
of two numbers.

(c) Use? your formulas from the previous part to show that
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Use this to quickly write down the first seven positive solutions to the Pell’s equation
x? — 2y = 1.
(d) Repeat the steps above with the appropriate numbers for the Pell’s equation 22 —5y? = 1.

(a) We know that 2441 + yks1v2 = (21 + yv/2)(3 + 2/2), s0 [““] = B ﬂ {x’“}
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We also have {ml} = [3
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(b) Using linear algebra, we obtain
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(c) Since 0 < 3—2v/2 < 1, we have 0 < (3—2v/2)* < 1. Then, as ), = (3+2‘/§)k;(3_2\/§)k

k k
is an integer, and % =z — B+2v2)" 5o hotween 0 and 1, we must have that

! 2
x is the round up of % Similar considerations yield the formula for y;. We
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can just plug into a dollar store calculator to get solutions: for example,

114242.999998 and % = 80782.0000015, so (z7,y7) = (114243,80782).

(d) We folow the same steps, now diagonalizing {Z 290} and multiplying by (1,0)

-+

(6]
(9+4\/5)’“;(9—4\/5)’“7 u = (9+4\/5)’;\—/(59—4\/5)k. Again (9 — 4\/5)k <1
makes the rounding work. Then OF4/5% — 299537288.999999999 and (/51 —
133957148.00000000037, s0 (27, y7) = (299537289, 133957148).

get xp =

(3) Not solving 22 — Dy? = —1: Let D > 1 be a positive integer that is not a perfect square.

a) Show that if D = 0 (mod 4) or D = 3 (mod 4), then the equation 22 — Dy? = —1 has
Y
no integer solutions.

2Recall that |z| denotes the greatest integer n such that n < z and [z] denotes the smallest integer n such that
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b) Show that if ¢ = 3 (mod 4) is prime and ¢| D, then the equation 22 — Dy? = —1 has no
q p q q Y
integer solutions.

(a) We know that 22,42 = 0,1 (mod 4). If D =0 (mod 4), then 2% — Dy? is congruent
to 0 or 1 modulo 4, whereas —1 is congruent to 3 mod 4 so there can be no solutions.
If D =3 (mod 4), then 22 — Dy? = 22 + 3? (mod 4), and the possible values are
0,1,2 (mod 4), so there again can be no solution.

(b) Suppose that ¢ = 3 (mod 4) and ¢ | D. Given a solution 22 — Dy? = —1, we obtain
2?2 = —1 (mod ¢). By QR part —1, this has no solutions since —1 is not a quadratic
residue in this case. Thus, 22 — Dy? = —1 has no solutions.

(4) Solving 22 — Dy? = —1: Let D > 1 be a positive integer that is not a perfect square.
(a) Show that if (c,d) is a positive integer solution to 22 — Dy? = —1, then ¢ is a convergent
in the continued fraction expansion of v/D.
(b) Show that if (c,d) is a positive integer solution to z? — Dy? = —1, (a,b) is a positive
integer solution to z? — Dy? = 1, and

e+ fVD = (a+bV/D)(c+ dVD),

then (e, f) is another positive integer solution to #? — Dy? = —1.
(c) Describe infinitely many solutions to the equation z? — 13y% = —1.

(a) We have that 1 = |¢?> —d?D| = |c¢+ dv/D| - |c — dv/D|, so §+\/EH§ —\@‘ = 2.

Since |§ —V/D| <1 and VD > 1, we have ’g—l—\/ﬁ) > 2, so ‘g—\/ﬁ‘ < 5
By the Theorem on Good Approximations and convergents, this implies that ¢ is a
convergent.

(b) We have N(e+ fvD) = N(a+bv/D)N(c+dvD). Since (a,b) is a solution to Pell’s
equation, N(a + bv/D) = 1, and the given equation implies that N (¢ + dvD) = —1,
so N(e + fv/D) = —1, which means that (e, f) is a solution to the given equation.

(¢) From the convergent 1—58 computed above, we get the first solution 182 —13%52 = —1.
Then any (z,x ,yx) such that z + k +y,v/D = (649 + 180v/13)* (18 + 13v/5) for k > 0
is a solution of the given equation.

The remaining problem is only required for Math 845 students, though all are encouraged to think
about it.

(5) Let D be a positive integer that is not a perfect square. Suppose that 22> — Dy? = —1 has
a solution, and let (¢, d) be the smallest positive integer solution. Let (a,b) be the smallest
integer solution to the Pell’s equation 22 — Dy? = 1. Show that (¢ + d\/ﬁ)2 =a+bVD, and
use this to describe all solutions to 22 — Dy? = —1 in terms of ¢ and d.

Let (c,d) be the smallest positive integer solution to #2 — Dy? = —1 and (a,b) be the smallest
integer solution to the Pell’s equation z2 — Dy? = 1. Note first that o = a + bv/D has N(a)=1
and v = ¢+ dv/D has N(y) = —1. In particular, N(y?) = 1, so 42 is some positive solution to to
the Pell’s equation 22 — Dy? = 1. Based on our results on Pell’s equation, we must have 42 = o
for some k > 1.




We consider the elements of Z[v/D]:
oyt = (a4 bVD)(dVD — ¢) = (bdV'D — ac) + (ad — be)V'D
o~y = (a — bVD)(c+ dVD) = (ac — bdV'D) + (ad — be)VD.

Note that ad — be > 0 since a > byv/D and dv/D > ¢, so adv/D > bey/D.

We claim that bdv/D — ac > 0. To see this, first, if equality holds, then —1 = N(ay™') =
—(ad — be)?D is a contradiction. If bdv/D — ac < 0, then N(a~'v) = —1 and the coefficients of
a~ly yield a positive integer solution to 22 — Dy? = —1; say (e, f). But then v = (a™y)a =
(e4 fv/D)(a+bV/D) is easily seen to have larger positive coefficients than (e, f), which contradicts
minimality of (¢, d). This establishes the claim.

Thus, the coefficients of ay~! yield a positive solution to 2 — Dy? = —1; say (e, f); set
e = e+ fv/D. By an argument similar to above, we have (e, f) is less than (a,b). Then, the
coefficients of €2 are less than those of a?. Since N(g?) = (—1)? = 1, the coefficients of 2 are
a solution to the Pell’s equation 22 — Dy? = 1, and since every positive solution comes from a
power of a, we must have €2 = . That is: (ay™!)? = «, so 42 = a. This is what we wanted to
show.




