
Math 445 — Problem Set #6
Due: Friday, November 3 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. If you do
work with others, I ask that you write something along the top like “I collaborated with Steven Smale
on problems 1 and 3”. If you use a reference, indicate so clearly in your solutions. In short, be intel-
lectually honest at all times. Please write neatly, using complete sentences and correct punctuation.
Label the problems clearly.

(1) Use the methods from class to give a formula1 for all solutions of the Pell’s equation

x2 − 13y2 = 1.

We use the continued fraction algorithm:
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and since
√

13 − 3 appears as a remainder in the first step, the continued fraction must
start repeating. That is,

√
13 = [3; 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . . ].

We use this to generate a list of convergents a
b :
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and for each, we test whether a2 − 13b2 = 1. The first solution we get is (649, 180).
Now, by the theorem, every solution (xk, yk) arises of the form

(xk, yk) = (649 + 180
√

13)k.

(2) Closed formulas for solutions to Pell’s equations.

1As in class, in terms of coefficients powers of some a + b
√
D.
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(a) Explain why the kth positive solution (xk, yk) of the Pell’s equation x2−2y2 = 1 satisfies
the equation [

xk
yk

]
=

[
3 4
2 3
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]
.

(b) Diagonalize the matrix

[
3 4
2 3

]
and use this to give a closed expression for (xk, yk) in

terms of k. Your formulas should be in terms of particular linear combinations of powers
of two numbers.

(c) Use2 your formulas from the previous part to show that
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Use this to quickly write down the first seven positive solutions to the Pell’s equation
x2 − 2y2 = 1.

(d) Repeat the steps above with the appropriate numbers for the Pell’s equation x2−5y2 = 1.
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(c) Since 0 < 3−2
√

2 < 1, we have 0 < (3−2
√

2)k < 1. Then, as xk = (3+2
√
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√
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is an integer, and (3−2
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2 is between 0 and 1, we must have that

xk is the round up of (3+2
√
2)k

2 . Similar considerations yield the formula for yk. We

can just plug into a dollar store calculator to get solutions: for example, (3+2
√
2)7

2 =

114242.999998 and (3+2
√
2)7

2
√
2

= 80782.0000015, so (x7, y7) = (114243, 80782).

(d) We folow the same steps, now diagonalizing

[
9 20
4 9

]
and multiplying by (1, 0) to

get xk = (9+4
√
5)k−(9−4

√
5)k

2 , yk = (9+4
√
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√
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2
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. Again (9 − 4
√

5)k < 1

makes the rounding work. Then (9+4
√
5)7

2 = 299537288.999999999 and (9+4
√
5)7

2
√
5

=

133957148.00000000037, so (x7, y7) = (299537289, 133957148).

(3) Not solving x2 −Dy2 = −1: Let D > 1 be a positive integer that is not a perfect square.
(a) Show that if D ≡ 0 (mod 4) or D ≡ 3 (mod 4), then the equation x2 −Dy2 = −1 has

no integer solutions.

2Recall that bxc denotes the greatest integer n such that n ≤ x and dxe denotes the smallest integer n such that
n ≥ x.
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(b) Show that if q ≡ 3 (mod 4) is prime and q |D, then the equation x2 −Dy2 = −1 has no
integer solutions.

(a) We know that x2, y2 ≡ 0, 1 (mod 4). If D ≡ 0 (mod 4), then x2 −Dy2 is congruent
to 0 or 1 modulo 4, whereas −1 is congruent to 3 mod 4 so there can be no solutions.
If D ≡ 3 (mod 4), then x2 − Dy2 ≡ x2 + y2 (mod 4), and the possible values are
0, 1, 2 (mod 4), so there again can be no solution.

(b) Suppose that q ≡ 3 (mod 4) and q |D. Given a solution x2 −Dy2 = −1, we obtain
x2 ≡ −1 (mod q). By QR part −1, this has no solutions since −1 is not a quadratic
residue in this case. Thus, x2 −Dy2 = −1 has no solutions.

(4) Solving x2 −Dy2 = −1: Let D > 1 be a positive integer that is not a perfect square.
(a) Show that if (c, d) is a positive integer solution to x2−Dy2 = −1, then c

d is a convergent

in the continued fraction expansion of
√
D.

(b) Show that if (c, d) is a positive integer solution to x2 − Dy2 = −1, (a, b) is a positive
integer solution to x2 −Dy2 = 1, and

e+ f
√
D = (a+ b

√
D)(c+ d

√
D),

then (e, f) is another positive integer solution to x2 −Dy2 = −1.
(c) Describe infinitely many solutions to the equation x2 − 13y2 = −1.

(a) We have that 1 = |c2 − d2D| = |c+ d
√
D| · |c− d

√
D|, so

∣∣∣ cd +
√
D
∣∣∣ · ∣∣∣ cd −√D∣∣∣ = 1

d2 .

Since | cd −
√
D| ≤ 1 and

√
D > 1, we have

∣∣∣ cd +
√
D
∣∣∣ > 2, so

∣∣∣ cd −√D∣∣∣ < 1
2d2 .

By the Theorem on Good Approximations and convergents, this implies that c
d is a

convergent.
(b) We have N(e+ f

√
D) = N(a+ b

√
D)N(c+ d

√
D). Since (a, b) is a solution to Pell’s

equation, N(a+ b
√
D) = 1, and the given equation implies that N(c+ d

√
D) = −1,

so N(e+ f
√
D) = −1, which means that (e, f) is a solution to the given equation.

(c) From the convergent 18
5 computed above, we get the first solution 182−13∗52 = −1.

Then any (x,k , yk) such that x+k+ yk
√
D = (649 + 180

√
13)k(18 + 13

√
5) for k ≥ 0

is a solution of the given equation.

The remaining problem is only required for Math 845 students, though all are encouraged to think
about it.

(5) Let D be a positive integer that is not a perfect square. Suppose that x2 − Dy2 = −1 has
a solution, and let (c, d) be the smallest positive integer solution. Let (a, b) be the smallest

integer solution to the Pell’s equation x2 −Dy2 = 1. Show that (c+ d
√
D)2 = a+ b

√
D, and

use this to describe all solutions to x2 −Dy2 = −1 in terms of c and d.

Let (c, d) be the smallest positive integer solution to x2 −Dy2 = −1 and (a, b) be the smallest

integer solution to the Pell’s equation x2 −Dy2 = 1. Note first that α = a+ b
√
D has N(α) = 1

and γ = c+ d
√
D has N(γ) = −1. In particular, N(γ2) = 1, so γ2 is some positive solution to to

the Pell’s equation x2 −Dy2 = 1. Based on our results on Pell’s equation, we must have γ2 = αk

for some k ≥ 1.
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We consider the elements of Z[
√
D]:

αγ−1 = (a+ b
√
D)(d

√
D − c) = (bd

√
D − ac) + (ad− bc)

√
D

α−1γ = (a− b
√
D)(c+ d

√
D) = (ac− bd

√
D) + (ad− bc)

√
D.

Note that ad− bc > 0 since a > b
√
D and d

√
D > c, so ad

√
D > bc

√
D.

We claim that bd
√
D − ac > 0. To see this, first, if equality holds, then −1 = N(αγ−1) =

−(ad − bc)2D is a contradiction. If bd
√
D − ac < 0, then N(α−1γ) = −1 and the coefficients of

α−1γ yield a positive integer solution to x2 − Dy2 = −1; say (e, f). But then γ = (α−1γ)α =

(e+f
√
D)(a+b

√
D) is easily seen to have larger positive coefficients than (e, f), which contradicts

minimality of (c, d). This establishes the claim.
Thus, the coefficients of αγ−1 yield a positive solution to x2 − Dy2 = −1; say (e, f); set

ε = e + f
√
D. By an argument similar to above, we have (e, f) is less than (a, b). Then, the

coefficients of ε2 are less than those of α2. Since N(ε2) = (−1)2 = 1, the coefficients of ε2 are
a solution to the Pell’s equation x2 − Dy2 = 1, and since every positive solution comes from a
power of α, we must have ε2 = α. That is: (αγ−1)2 = α, so γ2 = α. This is what we wanted to
show.


