
Math 445 — Problem Set #5
Due: Friday, October 20 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. If you do
work with others, I ask that you write something along the top like “I collaborated with Steven Smale
on problems 1 and 3”. If you use a reference, indicate so clearly in your solutions. In short, be intel-
lectually honest at all times. Please write neatly, using complete sentences and correct punctuation.
Label the problems clearly.

(1) The continued fraction expansion of Euler’s constant e is given by

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].

Use this and results from class to find a rational approximation of e that is accurate to four
digits (beyond the decimal place) without using any other knowledge about the number e.

Taking the convergent C8 = [2; 1, 2, 1, 1, 4, 1, 1, 6] = 1264
465 , by Dirichlet’s theorem, we

have |e− C8| < 1
4652 < 1

104 .

(2) Find the real number with continued fraction expansion

[1; 2, 3, 2, 3, 2, 3, . . . ] (and repeats forever like so).

Write x = [1; 2, 3, 2, 3, 2, 3, . . . ]. Then x+2 = 3+ 1
2+ 1

3+ 1
2+ 1

...

. Thus, x+2 = 3+ 1
2+ 1

x+2

.

Simplifying, we get 2x2 + 2x− 7 = 0, which yields −1±2
√
15

4 . Only one root is positive, so
this must be the number with this expansion.

(3) Let d ≥ 2 be a positive integer.

(a) Show that the continued fraction expansion of
√
d2 + 1 is√

d2 + 1 = [d; 2d, 2d, 2d, 2d, 2d, 2d . . . ] (and repeats forever like so).

(b) Show that the continued fraction expansion of
√
d2 − 1 is√

d2 − 1 = [d− 1; 1, 2d− 2, 1, 2d− 2, 1, 2d− 2, . . . ] (and repeats forever like so).

(c) Apply the previous parts to give continued fraction expansions for
√

101 and
√

63.

First, we start with x =
√
d2 + 1. We run the continued fraction algorithm. Note that

b
√
d2 + 1c = d so the first partial quotient is d. We then take

1√
d2 + 1− d

=

√
d2 + 1 + d

√
d2 + 1

2 − d2
=
√
d2 + 1 + d,

and repeat. Then

b
√

d2 + 1 + dc = 2d

Since (
√
d2 + 1+d)−2d =

√
d2 + 1−d, the continued fraction algorithm continues in the

same way as above; i.e., repeats in a loop. It follows that the continues fraction algorithm
returns

[d; 2d, 2d, 2d, . . . ]

1



2

Now, we consider y =
√
d2 − 1. We run the continued fraction algorithm. Note that

b
√
d2 − 1c = d− 1 since (d− 1)2 < d2 − 1 < d2 so the first partial quotient is d− 1. We

then take

1√
d2 − 1− (d− 1)

=

√
d2 − 1 + (d− 1)

√
d2 − 1

2 − (d− 1)2
=

√
d2 − 1 + (d− 1)

2d− 2
,

and repeat. We claim that this number is less than 2; indeed, since d ≥ 2, we have

d + 1 < 9(d− 1)

d2 − 1 < 9(d− 1)2√
d2 − 1 < 3(d− 1)√

d2 − 1 + (d− 1) < 4(d− 1)
√
d2 − 1 + (d− 1)

2(d− 1)
< 2

so the next partial quotient must be 1. We continue the algorithm: we need to find the
floor of(√

d2 − 1 + (d− 1)

2(d− 1)
− 1

)−1
=

(√
d2 − 1− (d− 1)

2(d− 1)

)−1

=
2(d− 1)√

d2 − 1− (d− 1)

(√
d2 − 1 + (d− 1)√
d2 − 1 + (d− 1)

)

=
2(d− 1)(

√
d2 − 1 + (d− 1))

2(d− 1)
=
√

d2 − 1 + (d− 1).

Since b
√
d2 − 1c = d − 1, we have b

√
d2 − 1c = 2(d − 1). After subtracting the floor, we

get
√
d2 − 1− (d− 1), and the continued fraction algorithm returns to the same value as

after the 0th partial quotient. Thus, the algorithm will repeat the same values from that
point, namely 1, 2d − 2, and back again to 1, 2d − 2, and so on. We conclude that the
continued fraction is

[d− 1; 1, 2d− 2, 1, 2d− 2, . . . ].

(4) In this problem, we will prove the following theorem, which basically says that the convergents
are the best approximations of a real number by a rational number.
Theorem: Let r be a real number, Ck = pk

qk
be the k-th convergent of r, and p

q 6= r be a

rational number, with q > 0. If q < qk, then

∣∣∣∣r − p

q

∣∣∣∣ > ∣∣∣∣r − pk
qk

∣∣∣∣.
(a) Set u = (−1)k(qkp − pkq) and v = (−1)k(pk+1q − qk+1p). Show that pk+1u + pkv = p

and qk+1u + qkv = q.
(b) Show1 that u, v 6= 0, and that2 u and v have opposite signs.
(c) Show that qkr − pk and qk+1r − pk+1 have opposite signs.
(d) Show that |qr− p| = |u(qk+1r− pk+1) + v(qkr− pk)| ≥ |qkr− pk| and conclude the proof.

1Hint: Use the Proposition from class to show that pk, qk are coprime, and use this to show that u = 0 implies qk|q.
2Hint: Use the second equation from part (a).
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(a) We plug in the values:

pk+1u + pkv = (−1)kpk+1(qkp− pkq) + (−1)kpk(pk+1q − qk+1p)

= (−1)kp(pk+1qk − pkqk+1) = (−1)kp(−1)k = p,

and

qk+1u + qkv = (−1)kqk+1(qkp− pkq) + (−1)kqk(pk+1q − qk+1p)

= (−1)kq(pk+1qk − pkqk+1) = (−1)kq(−1)k = q,

where Proposition 66 was used in the last step.
(b) By Proposition 66, we know that 1 can be realized as a linear combination of pk and

qk, and hence gcd(pk, qk) = 1. Suppose that u = 0. Then qkp = pkq implies qk | pkq,
which implies qk | q, and in particular qk ≤ q, a contradiction. Now, if v = 0, then
q = qk+1u, so qk < qk+1 ≤ q. Finally, to see that u and v have opposite signs,
note that if u, v are both negative, then qk+1u + qkv is negative, contradicting that
qk+1u+ qkv = q > 0; if u, v are both positive, then qk+1u+ qkv > q, a contradiction.

(c) From Worksheet #11 problem #8, we know that r − p`

q`
− r ≥ 0 if ` is even and

r − p`

q`
≤ 0 if ` is odd. Multiplying by q`, the signs of q` − rp` follow the same rule.

Since one of k, k + 1 is even and the other odd, the claim follows.
(d) Using (a), we have

qr − p = (qk+1u + qkv)r − (pk+1u + pkv) = u(qk+1r − pk+1) + v(qkr − pk).

Since u, v have opposite signs and (qk+1r−pk+1), (qkr−pk) have opposite signs, the
two terms in the sum above, u(qk+1r − pk+1) and v(qkr − pk) have the same sign.
Thus,

|qr − p| = |u(qk+1r − pk+1)|+ |v(qkr − pk)| ≥ |v(qkr − pk)| ≥ |qkr − pk|.
Dividing through by qk, we get∣∣∣∣r − pk

qk

∣∣∣∣ ≤ q

qk

∣∣∣∣r − p

q

∣∣∣∣ < ∣∣∣∣r − p

q

∣∣∣∣ .


