
Math 445 — Problem Set #4
Due: Friday, September 29 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. If you do
work with others, I ask that you write something along the top like “I collaborated with Steven Smale
on problems 1 and 3”. If you use a reference, indicate so clearly in your solutions. In short, be intel-
lectually honest at all times. Please write neatly, using complete sentences and correct punctuation.
Label the problems clearly.

(1) Use quadratic reciprocity and its variants to determine if each of the following is a square
modulo 257 (which is prime):
• −2
• 59
• 53

We compute(
−2

257

)
=

(
−1

257

)(
2

257

)
= 1 · 1 since 257 ≡ 1 (mod 4) and 257 ≡ 1 (mod 8),

= 1

so −2 is a square modulo 257.
We compute(

59

257

)
=

(
257

59

)
since 257 ≡ 1 (mod 4)

=

(
21

59

)
=

(
3

59

)(
7

59

)
= −

(
59

3

)
· −

(
59

7

)
since 59, 3, 7 ≡ 3 (mod 4),

=

(
59

3

)
·
(

59

7

)
=

(
2

3

)
·
(

3

7

)
= −1 · −1 = 1

so 59 is a square modulo 257.
We compute(

53

257

)
=

(
257

53

)
since 257 ≡ 1 (mod 4)

=

(
45

53

)
=

(
32

53

)
·
(

5

53

)
= 1 ·

(
53

5

)
since 53 ≡ 1 (mod 4)

=

(
3

5

)
= −1

so 53 is not a square modulo 257.

(2) The number p = 892, 371, 481 = 1 + 8 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 is prime. (You do not need

to check this.) Show that
(

n
p

)
= 1 for 0 < n < 29. Deduce that there is no primitive root [n]

in Zp with 0 < n < 29.
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We will show that 2, 3, 5, 7, 11, 13, 17, 19, 23 are all squares modulo p. For p = 2, we

apply Quadratic Reciprocity “part 2”: since p ≡ 1 (mod 8), we have
(

2
p

)
= 1, so 2 is

indeed a square. For each odd prime q listed above, note that p ≡ 1 (mod 4) and that

p ≡ 1 (mod q). Thus,
(

q
p

)
=

(
p
q

)
=

(
1
q

)
= 1, so each such q is a square modulo p.

Then, any integer 0 < n < 29 has a prime factorization involving only the primes 2 and

q on the list above; thus
(

n
p

)
can be written as a product, all of whose factors are 1. We

deduce that each such n is a square modulo p.
Now, any square cannot be a primitive root: by Euler’s criterion, its order is at most

(p− 1)/2 < ϕ(p). We conclude that no such n can be a primitive root.

(3) Show that if p is an odd prime, then 5 is a square modulo p if and only if p ≡ ±1 (mod 5).

By quadratic reciprocity,
(

5
p

)
=

(
p
5

)
. The only squares modulo 5 are ±1, so the result

follows.

(4) Use Gauss’ Lemma to prove that if p ≡ 7 (mod 8), then 2 is a quadratic residue modulo p.
(This is the p ≡ −1 (mod 8) case of QR part 2.)

We apply Gauss’ Lemma, with a = 2 in the notation of the worksheet. Write p = 8k+7
for some k, so, in the notation of the Lemma, p′ = 4k+3. We take the sequence of integers

2, 4, . . . , 2(4k + 3).

The elements
2, 4, . . . , 4k + 2

are all in the range [−p′, p′]. For each of the elements

4k + 4, . . . , 8k + 6

subtracting p yields elements

−(4k + 3), . . . ,−1

that are all in the range [−p′, p′]. Thus, the number of negative elements is the number of
elements in the latter list, which is 2k + 2. Since this is even, Gauss’ Lemma guarantees
that a = 2 is a square.

(5) Explicit square roots modulo some primes:
(a) Show that1 if p ≡ 3 (mod 4) and a is a quadratic residue modulo p, then a(p+1)/4 is a

square root of a modulo p.
(b) Show that if p ≡ 5 (mod 8) and a is a quadratic residue modulo p, then either a(p+3)/8

or (2a)(4a)(p−5)/8 is a square root of a modulo p.
(c) Use parts (a) and (b) to find square roots of [13]23 and [6]29.

(a) Write p = 4k + 3. By Euler’s criterion, since a is a square, 1 ≡ a(p−1)/2 = a2k+1

(mod p). Then

(a(p+1)/4)2 = (ak+1)2 = a2k+2 = a2k+1a ≡ a (mod p),

showing that a(p+1)/4 is a square root of a modulo p.

1Hint: Use Euler’s criterion



3

(b) Write p = 8k + 5. By Euler’s criterion, since a is a square, 1 ≡ a(p−1)/2 = a4k+2

(mod p). Since (a2k+1)2 = a4k+2, we must have a2k+1 ≡ ±1 (mod p).
Suppose first that a2k+1 ≡ 1 (mod p). Then

(a(p+3)/8)2 ≡ (ak+1)2 ≡ a2k+2 ≡ a2k+1a ≡ a (mod p),

so a(p+3)/8 is a square root of a modulo p. On the other hand, if 2(p−1)/2 ≡ −1
(mod p) by Euler’s criterion and QR part 2. Then a2k+1 ≡ −1 (mod p), then

((2a)(4a)(p−5)/8)2 ≡ ((2a)(4a)k)2 ≡ 24k+2a2k+2

≡ 2(p−1)/2 · −1 · a ≡ −1 · −1 · a ≡ a (mod p),

so a(p+3)/8 is a square root of a modulo p.
(c) Since 23 ≡ 3 (mod 4), we use (a) to compute [13]6 = [6] is a square root of [13] in

Z23. Since 29 ≡ 5 (mod 8), we use (b) to give two candidates: [20] and [8]. We check
that [20]2 6= [6] and [8]2 = [6] in Z29, so [8] is a square root of [6].

The remaining problem is only required for Math 845 students, though all are encouraged to think
about them.

(6) The nth Fermat number is given by Fn = 22
n

+1. The first four Fermat numbers are prime;

Fermat thought F5 = 22
5

+ 1 = 4294967297 was too, but about a hundred years later, Euler
factored it as a product of two primes 641 · 6700417. In this problem, we will prove Pépin’s

test: For n > 0, Fn is prime if and only if 3
Fn−1

2 ≡ −1 (mod Fn).

(a) Show2 that if Fn is prime, then 3
Fn−1

2 ≡ −1 (mod Fn).

(b) Show3 that if 3
Fn−1

2 ≡ −1 (mod Fn) then Fn is prime.
(c) Use Pépin’s test to verify that F3 is prime.

(a) Suppose that Fn is prime. Then Euler’s criterion says that 3
Fn−1

2 ≡
(

3
Fn

)
(mod Fn).

But, since Fn ≡ 1 (mod 4), by quadratic reciprocity,
(

3
Fn

)
=

(
Fn

3

)
. We have 22

n ≡ 1

(mod 3), so Fn ≡ 2 (mod 3), and hence
(
Fn

3

)
= −1. We conclude that 3

Fn−1
2 ≡ −1

(mod Fn) in this case.

(b) Suppose that 3
Fn−1

2 ≡ −1 (mod Fn). Let p be a prime factor of Fn, which necessarily

is odd. Then 3
Fn−1

2 ≡ −1 (mod p). Squaring both sides, 3Fn−1 ≡ 1 (mod p), so the
order of [3] in Z×p divides Fn − 1 = 22

n

. Thus, the order of [3] in Z×p is a power of 2.

But, 3
Fn−1

2 ≡ −1 implies that the order of [3] is not 22
n−1. Since any proper divisor

of 22
n

divides 22
n−1, we deduce that the order of [3] is exactly 22

n

= Fn − 1. But
the order of [3] is at most p − 1, so p − 1 ≥ Fn − 1, forcing p = Fn, and hence that
Fn is prime.

(c) We have F3 = 22
3

+ 1 = 28 + 1 = 257. Then [3](F3−1)/2 = [3]128. We compute
3128 ≡ −1 (mod 257), so 257 is prime by Pépin’s test.

2Hint: Apply Euler’s criterion and QR.
3Hint: Let p be a prime factor of Fn, which necessarily is odd. Show that the order of [3] in Z×

p is exactly Fn − 1.


