Math 445 — Problem Set #4 Due: Friday, September 29 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand. If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times. Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.

- (1) Use quadratic reciprocity and its variants to determine if each of the following is a square modulo 257 (which is prime):
 - \bullet -2
 - 59
 - 53
- (2) The number $p = 892, 371, 481 = 1 + 8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$ is prime. (You do not need to check this.) Show that $\left(\frac{n}{p}\right) = 1$ for 0 < n < 29. Deduce that there is no primitive root [n] in \mathbb{Z}_p with 0 < n < 29.
- (3) Show that if p is an odd prime, then 5 is a square modulo p if and only if $p \equiv \pm 1 \pmod{5}$.
- (4) Use Gauss' Lemma to prove that if $p \equiv 7 \pmod{8}$, then 2 is a quadratic residue modulo p. (This is the $p \equiv -1 \pmod{8}$ case of QR part 2.)
- (5) Explicit square roots modulo some primes:
 - (a) Show that¹ if $p \equiv 3 \pmod{4}$ and a is a quadratic residue modulo p, then $a^{(p+1)/4}$ is a square root of a modulo p.
 - (b) Show that if $p \equiv 5 \pmod{8}$ and a is a quadratic residue modulo p, then either $a^{(p+3)/8}$ or $(2a)(4a)^{(p-5)/8}$ is a square root of a modulo p.
 - (c) Use parts (a) and (b) to find square roots of $[13]_{23}$ and $[6]_{29}$.

The remaining problem is only required for Math 845 students, though all are encouraged to think about them.

- (6) The *n*th **Fermat number** is given by $F_n = 2^{2^n} + 1$. The first four Fermat numbers are prime; Fermat thought $F_5 = 2^{2^5} + 1 = 4294967297$ was too, but about a hundred years later, Euler factored it as a product of two primes $641 \cdot 6700417$. In this problem, we will prove **Pépin's test**: For n > 0, F_n is prime if and only if $3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$.
 - (a) Show² that if F_n is prime, then $3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$.
 - (b) Show³ that if $3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$ then F_n is prime.
 - (c) Use Pépin's test to verify that F_3 is prime.

¹Hint: Use Euler's criterion

²Hint: Apply Euler's criterion and QR.

³Hint: Let p be a prime factor of F_n , which necessarily is odd. Show that the order of [3] in \mathbb{Z}_p^{\times} is exactly $F_n - 1$.