
Math 445 — Problem Set #3
Due: Tuesday, September 19 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. If you do
work with others, I ask that you write something along the top like “I collaborated with Steven Smale
on problems 1 and 3”. If you use a reference, indicate so clearly in your solutions. In short, be intel-
lectually honest at all times. Please write neatly, using complete sentences and correct punctuation.
Label the problems clearly.

(1) Using methods from this class, find all integers x that satisfy the congruences:
x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 8).

First we need to compute an inverse of 8 · 5 ≡ 1 modulo 3 (1 works), an inverse of
8 · 3 ≡ 4 modulo 5 (4 works), and an inverse of 5 · 3 ≡ 7 modulo 8 (7 works. Then a
particular solution is 1 · 1 · 40 + 2 · 4 · 24 + 3 · 7 · 15 = 547 and the general solution is
547 + 3 · 5 · 8k = 547 + 120k.

(2) Compute1 the last three base ten digits of 1117
1923

.

By Euler’s Theorem, 11ϕ(1000) ≡ 1 (mod 1000). Using the factorization 1000 = 23 · 53,
we compute ϕ(1000) = (2−1) ·22 · (5−1) ·52 = 400. Thus, if 171923 ≡ a (mod 400), then

1117
1923 ≡ 11a (mod 1000).

Now, by Euler’s Theorem, 17ϕ(400) ≡ 1 (mod 400). Using the factorization 400 =
24 · 52, we compute ϕ(400) = (2− 1) · 23 · (5− 1) · 5 = 160. Thus, if 1923 ≡ b (mod 160),
then 171923 ≡ 17b (mod 400).

We have 1923 ≡ 3 (mod 160), so 171923 ≡ 173 ≡ 113 (mod 400). So, 1117
1923 ≡

11113 (mod 1000). This is now something some online calculators can deal with, or more
concretely, we can repeatedly square:

112 ≡ 121

114 ≡ 1212 ≡ 641

118 ≡ 6412 ≡ 881

1116 ≡ 8812 ≡ 161

1132 ≡ 1612 ≡ 921

1164 ≡ 9212 ≡ 241

and then
11113 = 1164 · 1132 · 1116 · 111 ≡ 931 (mod 1000).

So, the last digits are 931.

(3) Computing (some) roots in Zn:
(a) Suppose we are given a congruence equation of the form am ≡ b (mod n), with a and n

coprime. Given integers c, d such that cm + dϕ(n) = 1, show that bc ≡ a (mod n).
(b) Use this to find a cube root of [7] in Z101, and a seventh root of [3] in Z200.

1Note that the standard convention for double exponents is that ab
c

means a(b
c) and not (ab)c = abc. Also, Nebraska

beat Iowa State 26–14 on Nov 17, 1923.
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(c) Explain why this method will never help us find square roots in Zp for p an odd prime.

(a)

bc ≡ amc ≡ a1−dϕ(n) ≡ a(aϕ(n))d ≡ a (mod n),

using Euler’s Theorem.
(b) We use the Euclidean algorithm to write −33 · 3 + 1 · 100 = 1, so by the first part

(and Fermat/Euler) [7]−33 ≡ [7]67 ≡ [8] is a cube root of [7]. Similarly for the other,
we find −2 · 80 + 23 · 7 = 1, so [3]23 ≡ [27] is a seventh root of [3].

(c) We have ϕ(p) = p− 1 is even, so 2 is not coprime with ϕ(p).

(4) Let G be a finite group and g ∈ G. Suppose that gn = 1 for some positive integer n, where
1 ∈ G is this identity element. Show that the order of g divides n.

Suppose that gn = 1 and that d is the order of g. Write n = de + r with 0 ≤ r < d.
Then singe gd = 1, we have 1 = gn = gde+r = (gd)egr = 1egr = gr. By definition of
order, since r < d, we must have that r = 0, so d|n.

(5) Prove that if p and q are distinct odd primes, there is no primitive root in Zpq.

Write ϕ(p) = p − 1 = 2a and ϕ = q − 1 = 2b. We claim that every element of Z×
pq

has order at most 2ab < (2a)(2b) = ϕ(pq); from this claim, the statement follows since a
primitive root would have order ϕ(pq) by definition.

Take x = [r] ∈ Z×
pq. By Fermat’s Little Theorem, we have rp−1 ≡ 1 (mod p), and

rq−1 ≡ 1 (mod q). Then, r2ab ≡ (rp−1)b ≡ 1 (mod p) and r2ab ≡ (rq−1)a ≡ 1 (mod q).
Since p, q are coprime, by the uniqueness part of the Chinese Remainder Theorem, we
must have r2ab ≡ 1 (mod pq), and hence the order of x = [r] is at mote 2ab, as claimed.

The remaining problems are only required for Math 845 students, though all are encouraged to think
about them.

(6) Fermat and Euler without the fine print:
(a) Fermat’s little theorem is often stated as: Let p be a prime, and a any integer. Then

ap ≡ a (mod p). Deduce this, perhaps with the help of our version.
(b) Show that if n is a product of distinct primes, then for any integer a, aϕ(n)+1 ≡ a (mod n).
(c) Find a counterexample to the statement: if n > 1 is an integer, then for any integer a,

aϕ(n)+1 ≡ a (mod n).

(a) We proceed by cases. If p - a, then ap−1 ≡ 1 (mod p) by FLT, so ap ≡ a (mod p).
If p | a, then a ≡ 0 (mod p), and hence ap ≡ 0 ≡ a (mod p).

(b) Write n = p1p2 · · · pk. Let N = ϕ(n) + 1.
We claim that aN ≡ a (mod pi) for each i. To show this, fix i. Note that N ≡ 1
(mod pi − 1), so write N = di(pi − 1) + 1. If pi - a, we have api−1 ≡ 1 (mod p) by
FLT, so aN ≡ adi(pi−1)+1 ≡ (api−1)dia ≡ a (mod pi). If pi | a, we have aN ≡ 0 ≡ a
(mod pi). This shows the claim.
Now, since aN ≡ a (mod pi) for each i, by the uniqueness part of CRT, we have
aN ≡ a (mod n).

(c) Take n = 4 and a = 2; then ϕ(n) = 2 and aϕn+1 = a3 ≡ 0 6≡ a.
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(7) Prove2 that if p is an odd prime and n > 0, then there is a primitive root in Zpn .

Note that the case n = 1 is a Theorem from class.
We address the case n = 2 next. Let r ∈ Z be a unit modulo p and suppose that r is a

primitive root modulo p, which, as we just said, exists. Since ϕ(p2) = p(p− 1), the order
of r modulo p2 divides p(p− 1). Since rp ≡ r 6≡ 1 (mod p), we have rp 6≡ 1 (mod p2), so
the order is not 1 or p. Thus, the order of r modulo p2 is either p− 1 or p(p− 1). That
is, a primitive root modulo p is either also a primitive root modulo p2 or has order p− 1
modulo p2.

Suppose that r is a primitive root modulo p and its order modulo p2 is p− 1. Then

(r + p)p−1 = rp−1 + (p− 1)rp−2p + multiples of p2 ≡ 1− rp−2p (mod p2).

But 1 − rp−2p cannot be a multiple of p2, since this would imply p|(1 − rp−2p) and p|1,
which is a contradiction. But r+p is a primitive root modulo p, and its order is not p−1,
so it must be a primitive root modulo p2. This concludes the case n = 2.

Now we claim that if r is a primitive root modulo p and p2, then

rp
k−2(p−1) 6≡ 1 (mod pk)

for any k ≥ 2. We proceed by induction on k, with base case k = 2 a consequence of the

definition of primitive root modulo p2. Write rp
k−2(p−1) = a+ bpk with 0 ≤ a < pk. Then

rp
k−1(p−1) = (rp

k−2(p−1))p = (a + pkb)p

= ap + pap−1pkb + multiples of p2k ≡ ap (mod pk+1).

By the Lemma we prove below, ap 6≡ 1 (mod pk+1), which completes the induction, and
the proof of the claim.

Finally, let r be a primitive root modulo p and p2. We note that the order of r in
Z×
pn divides ϕ(pn) = pn−1(p − 1). For any k, we can write pk = ek(p − 1) + 1, so

rp
k ≡ rek(p−1)+1 ≡ r 6≡ 1 (mod p), so rp

k 6≡ rp
k

(mod pn), and thus the order of r is
(p− 1)pk for some k. But by previous claim, the order is not (p− 1)pk for k < n− 1, so
r must be a primitive root modulo pn. �

Lemma: Let a be an integer not divisible by some prime p. If a 6≡ 1 (mod pk), then
ap 6≡ 1 (mod pk+1).
Proof: We proceed by induction on k. For the base case k = 1, by FLT, ap ≡ a (mod p),
so ap ≡ 1 (mod p2) implies ap ≡ 1 (mod p) implies a ≡ 1 (mod p).

For the inductive step, suppose for the sake of contradiction that a 6≡ 1 (mod pk) and
ap ≡ 1 (mod pk+1). By the IH, since ap ≡ 1 (mod pk), we have a ≡ 1 (mod pk−1), and
we can write a = 1 + pk−1t for some t. Then

ap = (1 + pk−1t)p = 1 + ppk−1t + multiples of p2k−2 ≡ 1 (mod pk),

a contradiction. �

2One possibility is to follow these steps (but please write your proof in a self-contained form):
(a) We already know this is true when n = 1. For n = 2, first show that if [r]p is a primitive root in Zp, then the

order of [r]p2 in Z×
p2

is either p− 1 or p(p− 1).

(b) Show that if [r]p is a primitive root in Zp, then either [r]p2 or [r + p]p2 is a primitive root in Zp2 .

(c) Show that if r ∈ Z is such that [r]p is a primitive root in Zp and [r]p2 is a primitive root in Zp2 , then rp
k−2(p−1) 6≡ 1

(mod pk) for any k ≥ 2.
(d) Conclude the proof.


