True or False. Justify.

(1) Every bounded sequence is a convergent sequence.
(2) If a sequence has a divergent subsequence, then it diverges.
(3) The limit of $f(x)=\frac{x^{2}-2 x+3}{x-7}$ as x approaches 3 is $-3 / 2$.
(4) The function $f(x)=\cos (1 / x)$ has a limit as x approaches 0 .
(5) If $\lim _{x \rightarrow-1} f(x)$ and $\lim _{x \rightarrow-1} g(x)$ both exist, then $\lim _{x \rightarrow-1} f(x) g(x)$ exists.
(6) If f is a function defined on $\mathbb{R},\{f(1 / n)\}_{n=1}^{\infty}$ converges to 2 , and $\lim _{x \rightarrow 0} f(x)=L$, then $L=2$.
(7) If f is continuous at $2, f(2)=3$, and $\lim _{x \rightarrow 1} g(x)=2$, then $\lim _{x \rightarrow 1}(f \circ g)(x)=3$.
(8) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 1 and $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges to -2 , then $\left\{a_{3 n-1} b_{n}-b_{n^{2}} / 4\right\}_{n=1}^{\infty}$ converges to $-5=(3 \cdot 1-1)(-2)-(-2)^{2} / 4$.
(9) For a given sequence, there are at most two real numbers that occur as limits of subsequences of the sequence.
(10) The function $f(x)=\frac{x^{2}-2 x+3}{x-7}$ is continuous on $(7, \infty)$.
(11) The function $f(x)=\sqrt{x^{4}+4 x^{2}+5}$ is continuous on \mathbb{R}.
(12) If the domain of f is \mathbb{R}, then f is continuous at some point.
(13) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ does not exist, then $\lim _{x \rightarrow a} f(x)+g(x)$ does not exist.
(14) If f is continuous at a and $\lim _{x \rightarrow a} f(x) \geq 5$, then there is some $\delta>0$ such that $f(x) \geq 5$ for all $x \in(a-\delta, a+\delta)$.
(15) There exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\left\{r \in \mathbb{R} \mid\right.$ there is a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ that converges to $\left.r\right\}=[0,3]$.

True or False. Justify.

(16) Every sequence has a bounded subsequence.
(17) There is a sequence without any monotone subsequence.
(18) The limit of $f(x)=\sqrt{4-x^{2}}$ as x approaches 2 is 0 .
(19) If $\lim _{x \rightarrow-1} f(x) / g(x)=1$, then $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} g(x)$.
(20) If $\lim _{x \rightarrow 2} f(x)=3$ and $\lim _{x \rightarrow 1} g(x)=2$, then $\lim _{x \rightarrow 1}(f \circ g)(x)=3$.
(21) If $\lim _{x \rightarrow 0} f(x)=2$, then the sequence $\{f(1 / n)\}_{n=1}^{\infty}$ converges to 2 .
(22) If f is a function defined on \mathbb{R} and $\{f(1 / n)\}_{n=1}^{\infty}$ converges to 2 , then $\lim _{x \rightarrow 0} f(x)=2$.
(23) The sequence $a_{n}=\sqrt{\pi n-\lfloor\pi n\rfloor}$ has a convergent subsequence, where $\lfloor x\rfloor$ denotes the largest integer that is smaller than x.
(24) For a given convergent sequence, there are at most two real numbers that occur as limits of subsequences of the sequence.
(25) The function $f(x)=\frac{x^{2}-2 x+3}{x-7}$ is continuous on \mathbb{R}.
(26) If $\lim _{x \rightarrow a} f(x)$ exists, then $f(x)$ is continuous at $x=a$.
(27) If f is continuous at a, then there exists some $\delta>0$ such that f is continuous on ($a-\delta, a+\delta$).
(28) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ does not exist, then $\lim _{x \rightarrow a} f(x) g(x)$ does not exist.
(29) If f is continuous at a and $\lim _{x \rightarrow a} f(x)>5$, then there is some $\delta>0$ such that $f(x)>5$ for all $x \in(a-\delta, a+\delta)$.
(30) There exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\left\{r \in \mathbb{R} \mid\right.$ there is a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ that converges to $\left.r\right\}=(0,3)$.

