True or False. Justify.

- (1) Every bounded sequence is a convergent sequence.
- (2) If a sequence has a divergent subsequence, then it diverges.
- (3) The limit of $f(x) = \frac{x^2 2x + 3}{x 7}$ as x approaches 3 is -3/2.
- (4) The function $f(x) = \cos(1/x)$ has a limit as x approaches 0.
- (5) If $\lim_{x\to -1} f(x)$ and $\lim_{x\to -1} g(x)$ both exist, then $\lim_{x\to -1} f(x)g(x)$ exists.
- (6) If f is a function defined on \mathbb{R} , $\{f(1/n)\}_{n=1}^{\infty}$ converges to 2, and $\lim_{x\to 0} f(x) = L$, then L = 2.
- (7) If f is continuous at 2, f(2) = 3, and $\lim_{x \to 1} g(x) = 2$, then $\lim_{x \to 1} (f \circ g)(x) = 3$.
- (8) If $\{a_n\}_{n=1}^{\infty}$ converges to 1 and $\{b_n\}_{n=1}^{\infty}$ converges to -2, then $\{a_{3n-1}b_n b_{n^2}/4\}_{n=1}^{\infty}$ converges to $-5 = (3 \cdot 1 1)(-2) (-2)^2/4$.
- (9) For a given sequence, there are at most two real numbers that occur as limits of subsequences of the sequence.
- (10) The function $f(x) = \frac{x^2 2x + 3}{x 7}$ is continuous on $(7, \infty)$.
- (11) The function $f(x) = \sqrt{x^4 + 4x^2 + 5}$ is continuous on \mathbb{R} .
- (12) If the domain of f is \mathbb{R} , then f is continuous at some point.
- (13) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, then $\lim_{x\to a} f(x) + g(x)$ does not exist.
- (14) If f is continuous at a and $\lim_{x\to a} f(x) \ge 5$, then there is some $\delta > 0$ such that $f(x) \ge 5$ for all $x \in (a \delta, a + \delta)$.
- (15) There exists a sequence $\{a_n\}_{n=1}^{\infty}$ such that $\{r \in \mathbb{R} \mid \text{there is a subsequence of } \{a_n\}_{n=1}^{\infty} \text{ that converges to } r\} = [0,3].$

True or False. Justify.

- (16) Every sequence has a bounded subsequence.
- (17) There is a sequence without any monotone subsequence.
- (18) The limit of $f(x) = \sqrt{4 x^2}$ as x approaches 2 is 0.
- (19) If $\lim_{x\to -1} f(x)/g(x) = 1$, then $\lim_{x\to -1} f(x) = \lim_{x\to -1} g(x)$.
- (20) If $\lim_{x\to 2} f(x) = 3$ and $\lim_{x\to 1} g(x) = 2$, then $\lim_{x\to 1} (f \circ g)(x) = 3$.
- (21) If $\lim_{x\to 0} f(x) = 2$, then the sequence $\{f(1/n)\}_{n=1}^{\infty}$ converges to 2.
- (22) If f is a function defined on \mathbb{R} and $\{f(1/n)\}_{n=1}^{\infty}$ converges to 2, then $\lim_{x\to 0} f(x) = 2$.
- (23) The sequence $a_n = \sqrt{\pi n \lfloor \pi n \rfloor}$ has a convergent subsequence, where $\lfloor x \rfloor$ denotes the largest integer that is smaller than x.
- (24) For a given convergent sequence, there are at most two real numbers that occur as limits of subsequences of the sequence.
- (25) The function $f(x) = \frac{x^2 2x + 3}{x 7}$ is continuous on \mathbb{R} .
- (26) If $\lim_{x\to a} f(x)$ exists, then f(x) is continuous at x = a.
- (27) If f is continuous at a, then there exists some $\delta > 0$ such that f is continuous on $(a \delta, a + \delta)$.
- (28) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, then $\lim_{x\to a} f(x)g(x)$ does not exist.
- (29) If f is continuous at a and $\lim_{x\to a} f(x) > 5$, then there is some $\delta > 0$ such that f(x) > 5 for all $x \in (a \delta, a + \delta)$.
- (30) There exists a sequence $\{a_n\}_{n=1}^{\infty}$ such that $\{r \in \mathbb{R} \mid \text{there is a subsequence of } \{a_n\}_{n=1}^{\infty} \text{ that converges to } r\} = (0,3).$