(1) Let $x, y \in \mathbb{R}$. The negation of the statement "If x and y are rational, then $x y$ is rational" is "If x and y are rational, then $x y$ is irrational".
(2) If a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 5 , then for all natural numbers $n, a_{n}>4$.
(3) There is a set S of irrational numbers such that $\sup (S)=2$.
(4) The sequence $\left\{\frac{3 n^{2}-4 n+7}{6 n^{2}+1}\right\}_{n=1}^{\infty}$ converges to $1 / 2$.
(5) The supremum of the set $\{1 / n \mid n \in \mathbb{N}\}$ is 1 .
(6) If a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L, then there is some $N \in \mathbb{R}$ such that for all natural numbers $n>N, a_{n}=L$.
(7) Every increasing sequence is convergent.
(8) If a sequence is not bounded below, then it diverges to $-\infty$.
(9) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges, then $\left\{\frac{a_{n}}{n}+2\right\}_{n=1}^{\infty}$ converges to 2 .
(10) There is a set S of real numbers such that $\sup (S)$ exists, but $\sup (S) \notin S$.
(11) If $a<b$ are real numbers, there is an integer $n \in \mathbb{Z}$ such that $a<n<b$.
(12) Every set of real numbers that is bounded above has a supremum.
(13) For every real number L there is a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $a_{n} \neq L$ for all $n \in \mathbb{N}$ and converges to L.
(14) One can prove that $2^{n} \geq 1+n$ for all natural numbers n by showing that $2^{1} \geq 1+1$ then assuming $2^{k} \geq 1+k$ and deducing $2^{k+1} \geq 2+k$.
(15) The negation of " $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a monotone sequence" is "there exists $n \in \mathbb{N}$ such that $a_{n}>a_{n+1}$ and $a_{n}<a_{n+1}$ ".
(16) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges to $+\infty$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ diverges to $-\infty$, then $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ converges to 0 .
(17) If $\left\{a_{n}^{2}\right\}_{n=1}^{\infty}$ converges to 1 , then $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges.
(18) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are convergent sequences, then $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence.
(19) Every set of real numbers satisfies the property that "for all $x \in S$, there exists a real number y such that $y^{2}<x$ ".
(20) Every nonempty set of integers that is bounded below has a smallest element (i.e., a minimum element).
(21) If $S \subseteq \mathbb{R}$ is bounded above, then there is a natural number b such that b is an upper bound for S.
(22) The supremum of the set $\{-1 / n \mid n \in \mathbb{N}\}$ is -1 .
(23) Every convergent sequence is either increasing or decreasing.
(24) A sequence of positive numbers can converge to a negative number.
(25) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges to $+\infty$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges, then $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ diverges to $+\infty$.
(26) Let $x, y \in \mathbb{R}$. The contrapositive of the statement "If x and y are rational, then $x y$ is rational" is "If $x y$ is irrational, then x is irrational or y is irrational".
(27) Every set of real numbers satisfies the property that "for all $x \in S$, there exists a real number y such that $x<y^{2}$ ".
(28) The negation of the statement "for all $x \in S$, there exists a real number y such that $x<y^{2}$ " is "for all $x \in S$, there exists a real number y such that $x \geq y^{2}$ ".
(29) To prove the formula $1+\frac{1}{2}+\cdots+\frac{1}{2^{n}}=2-\frac{1}{2^{n}}$ for all natural numbers n, it suffices to show that $1+\frac{1}{2}+\cdots+\frac{1}{2^{k}}=2-\frac{1}{2^{k}}$ implies $1+\frac{1}{2}+\cdots+\frac{1}{2^{k+1}}=2-\frac{1}{2^{k+1}}$.
(30) A sequence of positive numbers can converge to zero.
(31) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges and $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges, then $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ diverges.
(32) Every nonempty set of real numbers has a smallest element (i.e., a minimum element).
(33) A sequence of rational numbers can converge to an irrational number.
(34) A sequence of integers can converge to an irrational number.

