Math 325-002 - Problem Set \#8 Due: Thursday, November 3 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.

To prove that $\lim _{x \rightarrow a} f(x)=L$ by the definition we:

- Let $\epsilon>0$.
- Take $\delta=$ [some number computed from scratch work that makes $f(x)$ defined and $|f(x)-L|<\epsilon$ true for all x satisfying $0<|x-a|<\delta$.]
- Let x be a real number such that $0<|x-a|<\delta$.
- [Argument that $f(x)$ is defined and $|f(x)-L|<\epsilon$ true for this x.]
- Thus $\lim _{x \rightarrow a} f(x)=L$.
(1) Prove that $\lim _{x \rightarrow 1} \frac{2 x^{2}-2}{x-1}=4$.
(2) Let a, m, and b be real numbers. Prove ${ }^{1}$ that $\lim _{x \rightarrow a} m x+b=m a+b$.
(3) Prove 2 that limits, if they exist, are unique. That is, show that if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M$ are both true, then $L=M$.

[^0]
[^0]: ${ }^{1}$ Hint: You might want to separate the cases withe $m=0$ and $m \neq 0$.
 ${ }^{2}$ Hint: To obtain a contradiction, suppose that $L \neq M$. Take $\epsilon=\frac{|L-M|}{3}$ in the definition. Compare with the argument that a sequence converges to at most one value.

