Math 325-002 — Problem Set #8 Due: Thursday, November 3 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.

To prove that $\lim_{x \to a} f(x) = L$ by the definition we:

- Let $\epsilon > 0$.
- Take $\delta = [\text{some number computed from scratch work that makes } f(x) \text{ defined and } |f(x) L| < \epsilon \text{ true for all } x \text{ satisfying } 0 < |x a| < \delta.]$
- Let x be a real number such that $0 < |x a| < \delta$.
- [Argument that f(x) is defined and $|f(x) L| < \epsilon$ true for this x.]
- Thus $\lim_{x\to a} f(x) = L$.
- (1) Prove that $\lim_{x \to 1} \frac{2x^2 2}{x 1} = 4.$

(2) Let a, m, and b be real numbers. Prove¹ that $\lim_{x \to a} mx + b = ma + b$.

(3) Prove² that limits, if they exist, are unique. That is, show that if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M$ are both true, then L = M.

¹Hint: You might want to separate the cases with m = 0 and $m \neq 0$.

²Hint: To obtain a contradiction, suppose that $L \neq M$. Take $\epsilon = \frac{|L-M|}{3}$ in the definition. Compare with the argument that a sequence converges to at most one value.