Side 1: True or False. Justify.

(1) The function $f(x)=\left|x^{3}\right|$ is differentiable at $x=0$.
(2) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and f attains its maximum on $[a, b]$ at $x=c$, then $f^{\prime}(c)=0$.
(3) Every nonempty set of real numbers that is bounded above has a maximum element.
(4) The supremum of the set $\{x \in \mathbb{Q} \mid x<\pi\}$ is π.
(5) If the domain of f is \mathbb{R}, then f is continuous at some value of x.
(6) Every decreasing sequence is convergent.
(7) The function $f(x)=x^{3}-2 x^{2}+5$ is increasing or decreasing on $(0,3)$.
(8) The sequence $\left\{\frac{\sin \left(n^{2}\right)}{n}\right\}_{n=1}^{\infty}$ is convergent.
(9) We can prove that every polynomial $p(x)$ has a property P by induction on degree by showing that every constant function has property P and then showing that if $p(x)$ has property P then so does $p^{\prime}(x)$.
(10) For every pair of integers $m, n \in \mathbb{Z}, m^{2} \neq 8 n^{2}$.
(11) If f is continuous on $[1,3]$, and $y>f(1)>f(3)$, then there is no $c \in[1,3]$ with $f(c)=y$.
(12) If f and g are continuous on $(-7,7)$ and $g(4)=-1$, then $\lim _{x \rightarrow 4}(f \circ g)(x)=f(-1)$.
(13) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ both diverge, then so does $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$.
(14) If $f(x)>5$ for all $x \neq-7$ and $\lim _{x \rightarrow-7} f(x)=L$, then $L>5$.

Side 2: True or False. Justify.

(1) The polynomial $p(x)=x^{5}+5 x+1$ has exactly one (real) root.
(2) If f is differentiable and $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is strictly increasing on (a, b).
(3) The maximum of the set $\{x \in \mathbb{Q} \mid x<\pi\}$ is π.
(4) If S is a set of real numbers and $\sup (S) \in S$, then $\sup (S)$ is the maximum element of S.
(5) Every convergent sequence is bounded.
(6) Every monotone sequence has a convergent subsequence.
(7) If f is differentiable at $x=2$ and $f(2)=5$, then the sequence $\left\{f\left(\frac{2 n+1}{n+4}\right)\right\}_{n=1}^{\infty}$ converges to 5 .
(8) The function $f(x)=x^{3}-2 x^{2}+5$ attains a minimum value on $(0,3)$.
(9) The sequence $\left\{\sin \left(n^{2}\right)\right\}_{n=1}^{\infty}$ has a convergent subsequence.
(10) For any real numbers $a<b$, there is an integer c such that $a<n<b$.
(11) If f is differentiable on $\mathbb{R}, f^{\prime}(x) \leq 0$ for all $x>0$, and $f(x) \geq-5$ for all $x>0$, then the sequence $\{f(n)\}_{n=1}^{\infty}$ converges.
(12) We can prove that every polynomial $p(x)$ has a property P by induction on degree by showing that every constant function has property P and then showing that if $p^{\prime}(x)$ has property P then so does $p(x)$.
(13) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ both diverge to $+\infty$, then so does $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$.
(14) If $\lim _{x \rightarrow-3} f(x)>5$, then $\exists \delta>0$ such that $f(x)>5$ for all $x \in(-3-\delta,-3) \cup(-3,-3+\delta)$.

