Math 325-002 — Problem Set #7 Due: Thursday, October 27 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.

- (1) For each of the following, give an explicit example as indicated; no proofs are necessary.
 - (a) A sequence that has a subsequence that converges to 1, another subsequence that converges to 2, and a third subsequence that converges to 3.
 - (b) A sequence that has one sequence that is monotone and converges to 0 and another subsequence that is monotone and diverges to $+\infty$.
- (2) Prove that if $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$, then every subsequence of $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$.
- (3) Define a sequence $\{a_n\}_{n=1}^{\infty}$ recursively by $a_1 = 2$ and $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$.

 - (a) Prove that $a_n > 0$ for all $n \in \mathbb{N}$. (b) Prove¹ that $a_n^2 \ge 2$ for all $n \in \mathbb{N}$.
 - (c) Prove² that the sequence is decreasing.
 - (d) Show that the sequence is convergent.
 - (e) Determine³ what value the sequence converges to.
- (4) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and L a real number. Show that $\{a_n\}_{n=1}^{\infty}$ converges to L if and only if both of the subsequences $\{a_{2k}\}_{k=1}^{\infty}$ and $\{a_{2k+1}\}_{k=1}^{\infty}$ converge to L.

¹Write $a_n - 2$ in terms of a_{n-1} and factor the expression.

²Consider $a_{n+1} - a_n$ and use (b).

³If the sequence converges to L, explain why $L = \frac{L}{2} + \frac{1}{L}$, and solve for L.