## Math 325-002 - Problem Set \#6 <br> Due: Thursday, October 6 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3 ". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.
(1) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences. Either prove ${ }^{1}$ or give a counterexample to each of the following:
(a) If $\left\{a_{n}^{2}\right\}_{n=1}^{\infty}$ is divergent, then $\left\{a_{n}\right\}_{n=1}^{\infty}$ is divergent.
(b) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ both diverge, then $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ also diverges.
(c) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges and $\left\{b_{n}\right\}_{n=1}^{\infty}$ diverges, then $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ diverges.
(d) Suppose also that $b_{n} \neq 0$ for all $n \in \mathbb{N}$. If $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges to 0, then $\left\{\frac{a_{n}}{b_{n}}\right\}_{n=1}^{\infty}$ diverges.
(2) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be any bounded sequence (not necessarily convergent) and let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence that converges to 0 . Prove ${ }^{2}$ that $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ converges to 0 .
(3) Use the definition to prove that the sequence $\{-\sqrt{n}\}_{n=1}^{\infty}$ diverges to $-\infty$.
(4) Prove that if a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges to $-\infty$ then it is not bounded below.
(5) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence with $a_{n}>0$ for all $n \in \mathbb{N}$. Prove that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 if and only if $\left\{\frac{1}{a_{n}}\right\}_{n=1}^{\infty}$ diverges to $+\infty$.

[^0]
[^0]:    ${ }^{1}$ You may use Theorem 10.2 whenever convenient, but make sure you are using something the Theorem says, and nothing it doesn't!
    ${ }^{2}$ Note that Theorem 10.2 does not apply. Try a different one!

