Math 325-002 - Problem Set \#4

Due: Thursday, September 22 by 7 pm, on Canvas

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.
(1) Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence and L be a real number. Suppose that $b_{n}=L$ for all $n>1000000$ (but we know nothing about the first 1000000 values of b_{n}). Show that $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges to L.
(2) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence, and suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 8 .
(a) Show that there is some real number N such that $a_{n} \in(5,11)$ for all natural numbers $n>N$.
(b) Show that there is some real number N such that $a_{n}<8.001$ for all natural numbers $n>N$.
(c) Explain why $\left\{n \in \mathbb{N} \mid a_{n}<7\right\}$ is finite (has finitely many elements).
(3) Prove that ${ }^{1}$ the sequence $\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 0 .
(4) Let r be a real number. Prove that there is no "next" rational number: i.e., that the set of rational numbers greater than r has no minimum element.
(5) Let S be a set of real numbers, and $T=\left\{x^{2} \mid x \in S\right\}$.
(a) Prove that if T is bounded above, then S is bounded above.
(b) Prove or disprove the converse to part (a).

[^0]
[^0]: ${ }^{1}$ By \sqrt{n}, we mean the positive number whose square is n. Such a number exists by a proof similar to the one that $\sqrt{2}$ exists.

