Math 325-002 - Fake Problem Set Due: Never

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.
(1) Let $[a, b]$ be a closed interval and f be a continuous function on $[a, b]$. Show that the range of f (that is, $\{f(x) \mid x \in[a, b]\}$) is a closed interval.
(2) Let f and g be functions defined on \mathbb{R} and a a real number. Assume that f is differentiable at a and $f(a)=f^{\prime}(a)=0$.
(a) Use the product rule to show that if g is differentiable at a, then $(f g)^{\prime}(a)=0$.
(b) Show that if g is continuous at a, then $(f g)^{\prime}(a)=0$.
(c) Show that if g is not continuous at a, then $f g$ may not be differentiable at a.

Problems that will only make sense after Tuesday:
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on $\mathbb{R}, f(0)=0$, and $f^{\prime}(x)<1$ for all $x \in \mathbb{R}$. Show that $f(x)<x$ for all $x>0$.
(4) A fixed point of a function is a function x is a number r such that $f(r)=r$. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R} and $f^{\prime}(x) \neq 1$ for all $x \in \mathbb{R}$, then f has at most one fixed point.

