1. Aucust 23, 2022

What is a number? Certainly the things used to count sheep, money,
etc. are numbers: 1,2,3,.... We will call these the natural numbers
and write N for the set of all natural numbers

N={1,2,3,4,...}.

Since we like to keep track of debts too, we’ll allow negatives and 0,
which gives us the integers:

Z=1{.,-3-2-1,0123.4,...}

(The symbol Z is used since the German word for number is zahlen.)

Fractions should count as numbers also, so that we can talk about
eating one and two-thirds of a pizza last night. We define a rational
number to be a number expressible as a quotient of two integers: ™ for
m,n € Z with n # 0. For example

5 2 2019

37772020
are rational numbers. Of course, we often talk about numbers such as
“two and a fourth”, but that the same as %. Every integer is a rational
number just by taking 1 for the denominator; for example, 7 = % The
set of all rational numbers is written as Q (for “quotient”).

You might not have thought about it before, but an expression of
the form ™ is really an “equivalence class”: the two numbers ”* and
are deemed equal if mb = na. For example g = % because 6 -3 =9 - 2.

We’ll talk more about decimals later on, but recall for now that a dec-
imal that terminates is just another way of representing a rational num-
ber. For example, 1.9881 is equal to %. Less obvious is the fact that
a decimal that repeats also represents a rational number: For example,
1.333... is rational (it’s equal to 3) and so is 23.91278278278 .... We'll
see why this is true later in the semester.

Are these all the numbers there are? Maybe no one in this class
would answer “yes”, but the ancient Greeks believed for a time that
every number was rational. Let’s convince ourselves, as the Greeks did
eventually, that there must be numbers that are not rational. Imagine
a square of side length 1. By the Pythagorean Theorem, the length of
its diagonal, call this number ¢, must satisfy

c=1+1"=2

That is, there must be a some number whose square is 2 since certainly

the length of the diagonal in such a square is representable as a number.
1
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Now, let’s convince ourselves that there is no rational number with this
property. In fact, I’'ll make this a theorem.

Theorem 1.1. There is no rational number whose square is 2.

Preproof Discussion 1. Before launching a formal proof, let’s philos-
ophize about how one shows something does not exist. To show some-
thing does not exist, one proves that its existence is not possible. For
example, I know that there must not be large clump of plutonium sewn
into the mattress of my bed. I know this since, if such a clump existed,
I'd be dead by now, and yet here I am, alive and well!

More generally and formally, one way to prove the falsity of a state-
ment P is to arque that if we assume P to be true then we can deduce
from that assumption something that is known to be false. If you can
do this, then you have proven P is false. In symbols: If one can prove

P = Contradiction

then the statement P must in fact be false.

In the case at hand, letting P be the statement “there is a rational
number whose square is 2”7, the Theorem 1is asserting that P is false.
We will prove this by assuming P is true and deriving an impossibility.

This is known as a proof by contradiction.

Proof. By way of contradiction, assume there were a rational number
q such that ¢> = 2. By definition of “rational number”, we know that
q can be written as ™ for some integers m and n such that n # 0.
Moreover, we may assume that we have written ¢ is reduced form so
that m and n have no prime factors in common. In particular, we may
assume that not both of m and n are even. (If they were both even,
then we could simplify the fraction by factoring out common factors
of 2’s.) Since ¢* = 2, ’:—22 = 2 and hence m? = 2n%. In particular, this
shows m? is even and, since the square of an odd number is odd, it
must be that m itself is even. So, m = 2a for some integer a. But
then (2a)? = 2n? and hence 4a® = 2n? whence 2a® = n?. For the same
reason as before, this implies that n must be even. But this contradicts
the fact that m and n are not both even.

We have reached a contradiction, and so the assumption that there

is a rational number ¢ such that ¢ = 2 must be false. 0

A version of the previous proof was known even to the ancient
Greeks.

Our first major mathematical goal in the class is to make a formal
definition of the real numbers. Before we do this, let’s record some
basic properties of the rational numbers. I'll state this as a Proposition
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(which is something like a minor version of a Theorem), but we won'’t
prove them; instead, we’ll take it for granted to be true based on our
own past experience with numbers.

For the rational numbers, we can do arithmetic (4, —, x, =) and we
also have a notion of size (<,>). The first seven observations below
describe the arithmetic, and the last three describe the notion of size.

Proposition 1.2 (Arithmetic and order properties of Q). The set of
rational numbers form an “ordered field”. This means that the following
ten properties hold:

(1) There are operations + and - defined on Q, so that if p,q are
n Q, then so are p+q and p - q.

(2) Each of + and - is a commutative operation (i.e., p+q=q+p
and p-q = q-p hold for all rational numbers p and q).

(3) Each of + and - is an associative operation (i.e., (p+q) +1r =
p+(q+7) and (p-q)-r =p-(q-7) hold for all rational numbers
P, q, and r).

(4) The number 0 is an identity element for addition and the num-
ber 1 is an identity element for multiplication. This means that
O+g=qand1-q=q forallq € Q.

(5) The distributive law holds: p-(q+ 1) = p-q+p-r for all
p,q,r € Q.

(6) Every number has an additive inverse: For any p € Q, there is
a number —p satisfying p + (—p) = 0.

(7) Every nonzero number has a multiplicative inverse: For any p €
Q such that p # 0, there is a number p~! satisfying p - p~' = 1.

(8) There is a “total ordering” < on Q. This means that
(a) For all p,q € Q, either p < q or q < p.

(b) If p < q and q < p, then p = q.
(c) For allp,q,r € Q, if p < q and g <r, then p <.

(9) The total ordering < is compatible with addition: If p < q then
p+r<qg+r.

(10) The total ordering < is compatible with multiplication by non-
negative numbers: If p < q and r > 0 then pr < qr.

Which of the properties from Proposition does N satisfy?

The commutativity, associativity, distributive law, multiplicative iden-
tity, and all of the ordering properties are true for N.

We expect everything from Proposition to be true for the real
numbers. We will build them into our definition. To define the real
numbers R, we take the ten properties listed in the Proposition to be
axioms. It turns out the set of real numbers satisfies one key additional
property, called the completeness axiom, which I cannot state yet.
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Axioms. The set of all real numbers, written R, satisfies the following
eleven properties:

(Aziom 1) There are operations + and - defined on R, so that if z,y € R,
then so are v +y and x - y.

(Aziom 2) Each of + and - is a commutative operation.

(Aziom 3) Each of + and - is an associative operation.

(Aziom 4) The real number O is an identity element for addition and the
real number 1 is an identity element for multiplication. This
means that 0 +x =x and 1 -x = x for all x € R.

(Aziom 5) The distributive law holds: x - (y +2) = x -y + x - z for all
x,y,z € R.

(Aziom 6) Every real number has an additive inverse: For any x € R,
there is a number —x satisfying x + (—x) = 0.

(Aziom 7) Every nonzero real number has a multiplicative inverse: For any
x € R such that x # 0, there is a real number x=1 satisfying
r oo =1.

(Aziom 8) There is a “total ordering” < on R. This means that
(a) For all z,y € R, either x <y ory < x.
(b) If t <y andy < z, then z < z.
(c) Forallz,y,z € R, ifx <y andy < z, then x < z.

(Aziom 9) The total ordering < is compatible with addition: If v <y then
r+z<y+z forall z.

(Aziom 10) The total ordering < is compatible with multiplication by non-
negative real numbers: If v <y and z > 0 then zx < zy.
(Aziom 11) The completeness axiom holds. (I will say what this means

later.)

There are many other familiar properties that are consequences of
this list of axioms. As an example we can deduce the following prop-
erty:

“Cancellation of Addition”: For real numbers, x,y, z €

R,if x+y =2+ y then x = 2.
Let’s prove this carefully, using just the list of axioms: Assume that
x+y = z+y. Then we can add —y (which exists by Axiom 6) to both
sides to get (x +y) + (—y) = (2 +y) + (—y). This can be rewritten as
z+(y+(—y)) =2+ (y+ (—y)) (Axiom 3) and hence as x +0 = z+0
(Axiom 6), which gives x = z (Axiom 4 and Axiom 2).

For another example, we can deduce the following fact from the
axioms:

r-0 =0 for any real number r.

Let’s prove this carefully: Let r be any real number. We have 0+0 =0
(Axiom 4) and hence 7-(0+0) = r-0. But 7-(0+0) = 7-0+7r-0 (Axiom 5)
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andsor-0=r-0+r-0. We can rewrite thisas 04+r-0=7r-0+7r-0
(Axiom 4). Now apply the Cancellation of Addition property (which
we previously deduced from the axioms) to obtain 0 = r - 0.

As I said, there are many other familiar properties of the real num-
bers that follow from these axioms, but I will not list them all. The
great news is that all of these familiar properties follow from this short
list of axioms. We will prove a couple, but for the most part, I'll rely
on your innate knowledge that facts such as r - 0 = 0 hold.

2. Auaust 25, 2022
Definition 2.1. A real number is irrational if it is not rational.

Making sense of if then statements and quantifier statements.

e The converse of the statement “If P then ()7 is the statement
“If @ then P”.

e The contrapositive of the statement “If P then Q7 is the state-
ment “If not ) then not P”.

e Any if then statement is equivalent to its contrapositive, but
not necessarily to its converse!

(1) For each of the following statements, write its contrapositive
and its converse. Is the original/contrapositive/converse true
or false for real numbers a, b? Explain why (but don’t prove).

(a) If @ is irrational, then 1/a is irrational.
(b) If @ and b are irrational, then ab is irrational.
(c) If @ > 3, then a® > 9.

(1) true; contrapositive is “If 1/a is rational, a is rational” is
true; converse is “if 1/a is irrational, then a is irrational” is
true.

(2) false; contrapositive is “If ab is rational, either a or b is
rational” is false; converse is “if ab is irrational then a and
b are irrational” is false.

(3) true; contrapositive is “if a? < 9, then a < 3 is true; converse
is “if a® > 9 then a > 3” is false.

e The symbol for “for all” is V and the symbol for there exists is
3.

e The negation of “For all x € S, P” is “There exists x € S such
that not P”.

e The negation of “There exists x € S such that P” is “For all
r € .5, not P”.



(2) Rewrite each statement with symbols in place of quantifiers,
and write its negation. Is the original statement true or false?
Explain why (but don’t prove them).

(a) There exists z € Q such that z? = 2.

(b) For all z € R, 22 > 0.

(c) For all # € R such thatf| z # 0, 22 > 0.

(d) For all x € R, there exists y € R such that z < y.
(e) There exists © € R such that for all y € R, z < y.

(1) 3z € Q : 2® = 2 is false. Negation: Vz € Q,z? # 2.
(2) Vx € R, 2% > 0 is false. Negation: 3z € R : 2% < 0.
(3) Vr € R: x # 0,22 > 0 is true. Negation: dv € R : z #

0,22 <0.

(4) Vx € R,Jy € R: z < y is true. Negation: 3z € R : Vy €
R,z >y.

(5) dJz € R:Vy € R,z < y is false. Negation: Vz € R,Jy € R :
T >y.

Proving if then statements and quantifier statements.

e The general outline of a direct proof of “If P then Q)7 goes
(1) Assume P.
(2) Do some stuff.
(3) Conclude Q.

e Often it is easier to prove the contrapositive of an if then
statement than the original, especially when the negation of
the hypothesis or conclusion is something negative.

e The general outline of a proof of “For all z € S, P” goes

(1) Let z € S be arbitrary.
(2) Do some stuff.
(3) Conclude that P holds for z.

e To prove a there exists statement, you just need to give
an example. To prove “There exists x € S such that P”
directly:

(1) Consider? z =[some specific element of S].
(2) Do some stuff.
(3) Conclude that P holds for x.

'In a statement of the form “For all 2 € S such that @, P”, the “such that Q”

Wl

part is part of the hypothesis: it is restricting the set S that we are “alling”’ over.



(3) Leﬂ x and y be real numbers. Use the axioms of R to pr0V63|
that x > y if and only if —y > —=x.
(4) Let x be a real number. Show that if z? is irrational, then z is
irrational.
(5) Let x be a real number. Use the axioms of R and facts we have
proven in class to show that if there exists a real number y such
that xy = 1, then x # 0.
(6) Prove that{ for all x € R such that o # 0, we have 22 # 0.
(7) Prove that there exists some = € R such that for every y € R,
Ty = .
(8) Proveq that (2d) is true and (2e) is false.
(9) Let S C R be a set of real numbers. Apply your results above
to prove that if for every x € S, 22 is irrational, then for every
y € S, y is irrational.
(10) Prove that 1 > 0.
(11) Let x,y be real numbers. Prove that if z < 0 and y < 0, then
zy > 0.

(3) Let x > y. Adding (—z) + (—y) to both sides (which exists
by Axiom 6), we obtain —y = z + ((—z) + (—y)) > y +
((—x)+(—y)) = —z (by Axiom 9 and Axiom 5). Conversely,
let —v < —y. Adding = + y to both sides, we obtain y =
(x+y)+ (—2) < (z+y)+ (—y) = z (by Axiom 9 and
Axiom 5).

(6) Let  and y be nonzero real numbers. By Axiom 7, there
are element 27!,y € R such that zz™! = 1 and yy~! = 1.
Then zy-(z7'y™1) = (za!)(yy~') = 1, using Axioms 2 and
3 in the first equality and Axiom 5 in the second. By the
previous fact (applies to xy) we conclude that zy # 0.

(7) Consider x = 1. Let y € R. By Axiom 4, we have zy =
ly = y. Thus, for all y € R, we have zy = =.

(8) (2d): Let z € R. Consider y = x + 1. Since 1 > 0 we have
y=x+1>x4+0=2x. Thus, for each x € R, we have some
y such that = < y. (2e): We claim this is false. Suppose,
for the sake of contradiction that this was true, and let x

2How you found this z is logically irrelevant to an existence proof, and should
not be included.

3Hint: You may want to add something to both sides.

“Hint: Use (5).

5You can “work out of order here” and use now.



be as in the statement. Then for any y € R, we have x < .
But, for y = x, the inequality x < y is false. This is a
contradiction, so the statement must be false.

(10) First we establish two lemmas.
Lemma: For real numbers x € R we have —(—z) = z.
Proof: We have

(=2) + (=(=2)) =0
~(=2) =0+ ~(=2) = (2 + (~2)) + (~(~2))
=z+ ((—z)+ (—(-2))) =2. O
Lemma: For real numbers z,y € R we have (—z)y =

—(zy).
Proof: We have that

0=0y=(z+ (—2))y =2y + (—2)y.
Adding —(zy) to both sides we get
—(zy) = —(zy) + (zy + (—2)y)
= (—(zy) + (=2)y) + (—2)y
=0+ (—z)y=(-z)y. O

We proceed with the proof. We either have 1 > 0 or 1 < 0.
Suppose that 1 < 0. Then —1 > 0, so

(~1)(~1) > (~1)0 =0.

But
(-D(=1) =-(1(-1) =—=(-1) =1,

so 1 > 0, contradicting the hypothesis.

3. Aucust 30, 2022

I owe you a statement of the very important Completeness Axiom.
Before we get there, I want to recall an axiom of N that we haven’t
discussed yet. It pertains to minimum elements in sets. Let’s be precise
and define minimum element.

Definition 3.1. Let S be a set of real numbers. A minimum element
of S is a real number x such that

(1) z € S, and

(2) forallye S,z <uy.



In this case, we write z = min(S).

The definition of mazimum is the same except with the opposite
inequality.

Axiom 3.2 (Well-ordering axiom). Fvery nonempty subset of N has a
minimum element.

Example 3.3. If S is the set of even multiples of 7, then S has 14 as
its minimum.

We generally like to say the minimum, rather than ¢ minimum. To
justify this, let’s prove the following.

Proposition 3.4. Let S be a set of real numbers. If S has a minimum,
then the minimum is unique.

Preproof Discussion 2. The proposition has the general form “If a
thing with property P exists, then it is unique”.

How do we prove a statement such as “If a thing with property P
exists, then it is unique”? We arque that if two things x and y both
have property P, then x and y must be the same thing.

Proof of Proposition[3.4]. Let S be a set of real numbers, and let z and
y be two minima of S. Applying part (1) of the definition of minimum
to y, we have y € S. Applying part (2) of the definition of minimum
to x and the fact that y € S, we get that x < y. Switching roles, we
get that y < z. Thus ¢ = y.

We conclude that if a minimum exists, it is necessarily unique. [

The previous proposition plus the Well-Ordering Axiom together im-
ply that every nonempty subset of N has exactly one minimum element.
A similar proof shows that if a maximum exists, it is necessarily unique.
Could a set fail to have a maximum or a minimum? Yes!

Example 3.5. (1) The empty set @ has no minimum and no max-
imum element. (There is no s € &)

(2) The set of natural numbers N has 1 as a minimum, but has
no maximum. (Suppose there was: if n = max(N) was the
maximum, then n < n+ 1 € N gives a contradiction.)

(3) The open interval (0,1) = {z € R |0 < x < 1} has no minimum
and no maximum. (Exercise later.)

Definition 3.6. Let S be any subset of R. A real number b is called
an upper bound of S provided that for every s € S, we have s < b.

For example, the number 1 is an upper bound for the interval (0, 1).
The number 182 is also an upper bound of this set and so is 7. It is
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pretty clear that 1 is the “best” (i.e., smallest) upper bound for this
set, in the sense that every other upper bound of (0, 1) must be at least
as big as 1. Let’s make this official:

Proposition 3.7. If b is an upper bound of the set (0,1), then b > 1.

I will prove this claim using just the axioms of the real numbers (in
fact, I will only use the first 10 axioms):

Proof. Suppose b is an upper bound of the set (0,1). By way of con-
tradiction, suppose b < 1. (Our goal is to derive a contradiction from
this.)

Consider the number y = I’J“Tl (the average of b and 1). I will argue
that b < y and b > y, which is not possible.

Since we are assuming b < 1, we have g < % and hence

2b b b b 1 b+1

b=5 =5ft3<3fts=—75 =¥

So, b < y.
Similarly,
1+1 b+1
1 = — _— y
2 2
so that
y < 1.

Since % € S and b is an upper bound of S, we have % < b. Since we

already know that b < y, it follows that % < y and hence 0 < y. We
have proven that y € (0,1). But, remember that b is an upper bound
of (0,1), and so we get y < b by definition.

To summarize: given an upper bound b of (0,1), starting with the
assumption that b < 1, we have deduced the existence of a number y
such that both b < y and y < b hold. As this is not possible, it must
be that b < 1 is false, and hence b > 1. O

This claim proves the (intuitively obvious) fact that 1 is “least upper
bound” of the set (0, 1). The notion of “least upper bound” will be an
extremely important one in this class.

Definition 3.8. A subset S of R is called bounded above if there exists
at least one upper bound for S. That is, S is bounded above provided
there is a real number b such that for all s € S we have s < b.

For example, (0, 1) is bounded above, by for example 50.

The subset N of R is not bounded above — there is no real number
that is larger than every natural number. This fact is surprisingly
non-trivial to deduce just using the axioms; in fact, one needs the
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Completeness Axiom to show it. But of course our intuition tells us
that it is obviously true.

Let’s give a more interesting example of a subset of R that is bounded
above.

Example 3.9. Define S to be those real numbers whose squares are
less than 2:

S={recR|z*<2}.
I claim S is bounded above. In fact, I'll prove 2 is an upper bound:
Suppose z € S. If x > 2, thenz- -2z >2-2and z-2 > 2-2, and hence
2?2 > 4 > 2. This contradicts the fact that x € S. So, we must have
T < 2.

A nearly identical argument shows that 1.5 is also an upper bound
(since 1.5 = 2.25 > 2) and similarly one can show 1.42 is an upper
bound. But 1.41 is not an upper bound. For note that 1.411? = 1.99091
and so 1.41 € S but 1.411 > 1.41.

Question: What is the smallest (or least) upper bound for this set
S? Clearly, it ought to be v/2 (i.e., the positive number whose square
is equal to exactly 2), but there’s a catch: how do we know that such
real number exists?

Definition 3.10. Suppose S is subset of R that is bounded above. A
supremum (also known as a least upper bound) of S is a number ¢ such
that

(1) ¢ is an upper bound of S (i.e., s < ¢ for all s € S) and
(2) if b is any upper bound of S, then ¢ < b.

In this case we write sup(S) = ¢.

Example 3.11. 1 is a supremum of (0,1). Indeed, it is clearly an
upper bound, and in the “Claim” above, we proved that if b is any
upper bound of (0,1) then b > 1. Note that this example shows that a
supremum of S does not necessarily belong to S.

Example 3.12. I claim 1 is a supremum of
0,]]={zeR|0<z <1}

It is by definition an upper bound. If b is any upper bound of (0, 1]
then, since 1 € (0, 1], by definition we have 1 < b. So 1 is the supremum
of (0, 1].

Observation 3.13. Let S be a set of real numbers. Suppose thatb € S

and that b is an upper bound for S. Then

(1) b is the mazimum of S, and
(2) b is a supremum of S.
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The subset N does not have a supremum since, indeed, it does not
have any upper bounds at all.

Can you think of an example of a set that is bounded above but has
no supremum? There is only one such example and it is rather silly:
the empty set is bounded above. Indeed, every real number is an upper
bound for the empty set. So, there is no least upper bound.

Having explained the meaning of the term “supremum”, I can finally
state the all-important completeness axiom:

Axiom (Completeness Axiom). Fvery nonempty, bounded-above sub-

set of R has a supremum.

4. SEPTEMBER 1, 2022

(1) Write, in simplified form, the negation of the statement “b is an
upper bound for S”.

There exists some x € S such that z > b.

(2) Write, in simplified form, the negation of the statement “S is
bounded above”.

For every b € R, there exists x € S such that x > b.

(3) Let S be a set of real numbers and suppose that ¢ = sup(S5).
(a) If x > ¢, what is the most concrete thing you can say about
x and S7?7

(b) If x < ¢, what is the most concrete thing you can say about
x and S7

(a) x ¢ S.

(b) There exists some y € S such that y > x.

(4) Let S be a set of real numbers, and let T'= {2s | s € S}. Prove
that if S is bounded above, then T is bounded above.

Assume that S is bounded above. Then there is some
upper bound b for S, so for every s € S, we have b > s. We
claim that 2b is an upper bound for 7. Indeed, if t € T,
then we can write t = 2s for some s € S, and s < b implies
t = 2s < 2b. Thus, T is bounded above.
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(5) Let S be a set of real numbers. Show that if S has a supremum,
then it is unique.

Suppose both x and y are both suprema of the same sub-
set S of R. Then, since y is an upper bound of S and x is a
supremum of S, by part (2) of the definition of “supremum”
we have y > x. Likewise, since x is an upper bound of S
and y is a supremum of S, we have x > y by definition.
Since x < y and y < x, we conclude z = y.

(6) Let S be a set of real numbers, and let T' = {% | s € S}. Di-

rectly prove that if S is unbounded above, then T" is unbounded
above.

Assume that S is unbounded above. To show that T
is unbounded above, let b be a real number. Since S is
unbounded above, 2b is not an upper bound for S, so there
is some s € S with s > 2b. Then § > b. By definition of
T, we have 5 € T, so b is not an upper bound of 7. We
conclude that 7" is unbounded above.

5. SEPTEMBER 6, 2022

Let us now explore consequences of the completeness axiom. We
know that there is no rational number whose square is 2; now we show
that there is indeed a real number whose square is two.

Proposition 5.1. There is a positive real number whose square is 2.

Proof. Define S to be the subset
S={reR|az*<2}

S is nonempty since, for example, 1 € S, and it is bounded above,
since, for example, 2 is an upper bound for S, as we showed earlier.
So, by the Completeness Axiom, S has a least upper bound, and we
know it is unique from the proposition above. Let us call it ¢. I will
prove (? = 2.

We know one of ¢2 > 2, (? < 2 or /> = 2 must hold. We prove (? = 2
by showing that both 2 > 2 and ¢? < 2 are impossible.

We start by observing that 1 < ¢ < 2. The inequality 1 < ¢ holds
since 1 € S and / is an upper bound of S, and the inequality ¢ < 2
holds since 2 is an upper bound of S and ¢ is the least upper bound
of S.
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Suppose £? < 2. We show this leads to a contradiction by showing
that ¢ is not an upper bound of S in this case. We will do this by
constructing a number that is ever so slightly bigger than ¢ and belongs
to S. Let e =2 — (2 Then 0 < & <1 (since 2 < 2 and (> > 1). We
will now show that ¢ +¢/5 is in S: We have

(C+e/5)? =0+ £a+ 2—€2+5(%+ ")
25 5 257
Now, using€§2and0<5§1, we deduce
20 4
0< =4 —<-4—<L

5O 2575 25

Putting these equations and inequalities together yields

€

(+3)

So, £+ £ € S and yet £ + £ > {, contradicting the fact that [ is an
upper bound of S. We conclude #? < 2 is not possible.

Assume now that ¢2 > 2. Our strategy will be to construct a number
ever so slightly smaller than ¢, which therefore cannot be an upper
bound of S, and use this to arrive at a contradiction. Let § = ¢? — 2.
Then 0 < § < 2 (since £ < 2 and hence > — 2 < 2). Since § > 0, we
have ¢ — g < {. Since / is the least upper bound of S, ¢ — g must not
be an upper bound of S. By definition, this means that there is r € S
such that ¢ — g < r. Since § < 2 and ¢ > 1, it follows that ¢ — g is
positive and hence so is r. We may thus square both sides of ¢ — g <r
to obtain

2Py e=2.

)
<6—5>2<T’2.
Now
) , 206 &P 205 62
22277 9_ 2 7
(¢ 5) = 5+25 0+ 5+25
since /2 = § + 2. Moreover,
205 62 200 6 4 9
2——+—==2 —)>2 1— -+ —
J+ =t +0(1— 5+25)_ +4( 5+25)
since ¢ < 2. We deduce that
206 6
0+2——+—=>24+96
5 +25_ + ( )2

Putting these inequalities together gives r? > 2, contrary to the fact
that r € S. We conclude that £2 > 2 is also not possible.
Since ¢? < 2 and ¢? > 2 are impossible, we must have ¢? = 2. O
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The collection of rational numbers does not satisfy the completeness
axiom and indeed it is precisely the completeness axiom that differen-
tiates R from Q.

Example 5.2. Within the set Q the subset S = {z € Q | 2? < 2}
does not have a supremum. That is, no matter which rational number
you pick that is an upper bound for S, you may always find an even
smaller one that is also an upper bound of S.

It is precisely the completeness axiom that assures us that everything
that ought to be a number (like the length of the diagonal of a square
with side length 1) really is a number. It gives us that there are “no
holes” in the real number line — the real numbers are complete.

For example, we can use it to prove that +/147 exists: Let S =
{r € R | 28 < 147}. Then S is nonempty (e.g., 0 € S) and bounded
above (e.g., 50 is an upper bound) and so it must have a supremum /.
A proof similar to (but even messier than) the proof of Proposition
above shows that ¢ satisfies (% = 147.

The completeness axiom is also at the core of the Intermediate Value
Theorem and many of the other major theorems we will cover in this
class.

We also need the completeness axiom to understand the relationship
between N, Q, and R.

Theorem 5.3. If x is any real number, then there exists a natural
number n such that n > x.

This looks really stupid at first. How could it be false? But consider:
there are examples of ordered fields, i.e. situations in which Axioms
1-10 hold, in which this Theorem is not true! So, its proof must rely
on the Completeness Axiom.

Proof. Let x be any real number. By way of contradiction, suppose
there is no natural number n such that n > x. That is, suppose that
for all n € N, n < z. Then N is a bounded above (by z). Since it is
also clearly nonempty, by the Completeness Axiom, N has a supremum,
call it £. Consider the number y := ¢ — 1. Since y < ¢ and ¢ is the
supremum of N, y cannot be an upper bound of N. So, there must be
some m € N such that such that £ — 1 < m. But then by adding 1 to
both sides of this inequality we get ¢ < m + 1 and, since m + 1 € N,
this contradicts that assumption that ¢ is the supremum of N.

We conclude that, given any real number x, there must exist a nat-
ural number n such that n > z. U

Corollary 5.4 (Archimedean Principle). If a € R, a > 0, and b € R,
then for some natural number n we have na > b.
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“No matter how small a is and how large b is, if we add a to itself
enough times, we can overtake b.”

Proof. We apply Theorem to the real number x = g It gives that
there is a natural number n such that n > z = g. Since a > 0, upon
multiplying both sides by a we get n-a > b. O

Theorem 5.5 (Density of the Rational Numbers). Between any two
distinct real numbers there is a rational number; more precisely, if
x,y € R and © < y, then there exists ¢ € Q such that x < q < y.

Proof. We will prove this by consider two cases: z > 0 and z < 0.

Let us first assume x > 0. We apply the Archimedean Principle
using @ = y — x and b = 1. (The Principle applies as a > 0 since
y > x.) This gives us that there is a natural number n € N such that

n-(y—x)>1

and thus )
I<—<y—u.

n

Consider the set S = {p € N | p2 > z}. Since £ > 0, using
the Archimedean principle again, there is at least one natural number
p € S. By the Well Ordering Axiom, there is a smallest natural number
meS.

We claim that mT’l < x. Indeed, if m > 1, then m —1 € N S
(because m — 1 is less than the minimum), so mT_l < x;if m =1, then
m—le,somT_leS:B.

So, we have

m—1 m
<zr<—
n n
By adding % to both sides of mT_l < x and using that % <y-—uz, we
get

s[3

1
§$+E<x+(y—x):y

and hence
m
r< — <4y.
n

Since ™ is clearly a rational number, this proves the result in this case
(when z > 0).

We now consider the case < 0. The idea here is to simply “shift”
up to the case we've already proven. By Theorem [5.3 we can find
a natural number j such that j > —z and thus 0 < x4+ 7 < y + J.
Using the first case, which we have already proven, applied to the
number x + j (which is positive), there is a rational number ¢ such that
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r+7<q<y+j. Wededuce that z < ¢ — j < y, and, since ¢ — j is
also rational, this proves the theorem in this case. O

6. SEPTEMBER 8, 2022

(1) Let W be the set of real numbers x that satisfy the inequality
3+ < 10.
(a) Write W mathematically in set notation.
(b) Does W have a supremum? Why or why not?
(c) Is sup(W) = 1?7 Why or why not?
(d) Is sup(W) = 47 Why or why not?

(a) W={zeR|z®+z<10}.

(b) Yes. It is nonempty, since 0 € W, and bounded above,
e.g., by 3: if x > 3, then 23 + 2 > 3%+ 3 = 30, so

(c¢) No: 1 is not an upper bound, because 1.5 € W.

(d) No: 3 is an upper bound, and 3 < 4.

(2) Use the Archimedean Principle to show that for any positive
number € > 0, there is a natural number n such that 0 < e < %

(3) Prove that the supremum of the set S = {1—21 | n € N} is 1.

(4) Let S be a set of real numbers, and suppose that sup(S) = /.
Let T ={s+ 7| s €S} Prove that sup(T) =(+7.

First, we show that ¢ + 7 is an upper bound of 7. Let
t € T. Then there is some s € S such that ¢t = s+ 7. Since
s </l ,wehavet =s5+7 < {+7,s0{+7is indeed an upper
bound. Next, let b be an upper bound for T. We claim
that b — 7 is an upper bound for S. Indeed, if s € S, then
s+7€Tsos+7<b sos<b—"7. Then, by definition of
supremum, we have b —7 > /¢, eso b > ( + 7.

(5) Prove the following:

Corollary 6.1 (Density of irrational numbers). For any real
numbers x,y with x < vy, there is some irrational number z
such that r < z < y.
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Let 2 < y be real numbers. Then we have z — /2 < y —
V2. By density of rationals, there is some rational number ¢
such that r—+v/2 < q < y—\/§. Then z < q+\/§ < y. Since
¢ is rational and /2 is irrational, z = ¢ + /2 is irrational,
and hence the number we seek.

(6) True or false & justify: There is a rational number x such that
|22 — 2| = 0.

False: this would imply that z is a rational number whose
square is 2.

(7) True or false & justify: There is a rational number = such that

7% — 2| < 1000000

True: By density of rational numbers, there is a rational
number ¢ such that V2 — 5000000 <qg< \/§ Then

2% = 2| = |z = V2| |z + V2|

1 1
4
= 5000000 (5000000 * )
1

< 5000000 °
1

~ 1000000

7. SEPTEMBER 13, 2022

We now turn our attention to the next major topic of this class: se-
quences of real numbers. We will spend the next few weeks developing
their properties carefully and rigorously. Sequences form the founda-
tion for much of what we will cover for the rest of the semester.

Definition 7.1. A sequence is an infinite list of real numbers indexed
by N:
ai, as, as,....

(Equivalently, a sequence is a function from N to R: the value of the
function at n € N is written as a,,.)
We will usually write {a,}>°, for a sequence.
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Example 7.2. To describe sequences, we will typically give a formula
for the n-th term, a,,, either an explicit one or a recursive one. On rare
occasion we’ll just list enough terms to make the pattern clear. Here
are some examples:

(1) {5+ (=1)"L}22 is the sequence that starts
11 14 21 24
TE A
(2) Let {a,}2, be defined by a1 = 1,a3 = 1 and a,, = a,,—1 + a2
for all n > 2. This gives the sequence

1,1,2,3,5,8,13,21,34, ...

This is an example of a recursively defined sequence. It is the
famed Fibonacci sequence.

(3) Let {c,}22, be the sequence whose n-th term is the n-th small-
est positive prime integer:

2,3,5,7,11,13,17,19,23, . . ..

Note that here I have not really given an explicit formula for the
terms of the sequence, but it is possible to describe an algorithm
that lists every term of the sequence in order.

You have all probably seen an “intuitive” definition of the limit of a
sequence before. For example, you probably believe that
1
54 (—1)"—
(1"
converges to 5. Let’s give the rigorous definition.

Definition 7.3. Let {a,}°; be an arbitrary sequence and L a real
number. We say {a,}5, converges to L provided the following condi-
tion is met:

For every real number € > 0, there is a real number N
such that |a, — L| < € for all natural numbers n such
that n > N.

This is an extremely important definition for this class. Learn it by
heart!
In symbols, the definition is
A sequence {a, }°°; converges to L provided
Ve>0,3N e R:VYneNst. n> N, |a, — L| <e.

It’s a complicated definition — three quantifiers!
Here is what the definition is saying somewhat loosely: No matter
how small a number € you pick, so long as it is positive, if you go far
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enough out in the sequence, all of the terms from that point on will be
within a distance of € of the limiting value L.

Example 7.4. To say that the sequence {a,}>°, where a, = 5 +
(—1)”% converges to 5 gives us a different statement for every ¢ > 0.
For example:

e Setting € = 3, there is a number N such that for every natural
number n > N, |a, — 5| < 3. Namely, we can take N = 0, since
for every term a,, of the sequence, |a,, — 5| < 3 holds true.

e Setting ¢ = %, there is a number N such that for every natural
number n > N, |a, — 5| < 5. We cannot take N = 0 anymore,
since 1 > 0 and |a; — 5| = 1 > 3. However, we can take N = 3,
since for n > 3, |a, — 5| = % < %

e Setting € = 1/1000000, there is a number N such that for every
natural number n > N, |a,, —5| < 1/1000000. We need a bigger
N; now N = 1000000 works.

In general, our choice of N may depend on ¢, which is OK since our
definition is of the form Ve > 0,dN ... rather than AN : Ve > 0....

Example 7.5. I claim the sequence {a,}22; where a, = 5+ (—1)"+
converges to 5. I'll give a rigorous proof, along with some commentary

and “scratch work” within the parentheses.

Proof. Let € > 0 be given.

(Scratch work: Given this e, our goal is to find N so that if n > N,
then [5+(—1)"+ —5| < e. The latter simplifies to = < &, which in turn
is equivalent to % < n since € and n are both positive. So, it seems
we've found the NV that “works”. Back to the formal proof....)

Let N = % Then % = ¢, since € is positive.

(Comment: We next show that this is the N that “works” in the
definition. Since this involves proving something about every natural
number that is bigger than N, we start by picking one.)

Pick any n € N such that n > N. Then % < % and hence

1 1 1 1
W5l = 54 (1) =5 = (1)~ = - < — =
1 =51 = 5+ (1) % 5] = [(-1)" 1| = - < =<
This proves that {5+ (—1)"1}>, converges to 5. O

Remark 7.6. A direct proof that a certain sequence converges to a
certain number follows the general outline:

e Let ¢ > 0 be given. (or, if your prefer, “Pick ¢ > 0.”)
e Let N = [expression in terms of € from scratch work].
e Let n € N be such that n > N.
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e [Argument that |a, — L| < /]
e Thus {a,}5°, converges to L.

Example 7.7. I claim that the sequence

on —1)

m+1/),
converges to % Again I'll give a proof with commentary and scratch
work in parentheses.

Proof. Let € > 0 be given.
(Scratch work: We need n to be large enough so that

2n—-—1 2

on+1 5

< €.

7

This simplifies to ‘ﬁ| < ¢ and thus to 57—

rewritten as ;- — + < n.)
_ 1 : : ) T
Let N = 5= — £. We solve this equation for e: We get 5 =

and hence 22 = 5 which gives finally
7

7 — BN+1?
“T BN +5

(Next we show this value of N works....)
Now pick any n € N is such that n > N. Then

on—1 2 _‘1071—5—1071—2

< €, which we can

S5N+1
5

T
 25n+5

Sn+1 5| 25n + 5

Since n > N, 25n 4+ 5 > 25N + 5 and hence

! < ’ =€
25n+5 25N +5
We have proven that if n € N and n > N, then

2n—-—1 2

on+1 5

< €.

2n—1
n+1Jpn=1

This proves { converges to % U

8. SEPTEMBER 15, 2022

(1) Let ¢ be areal number. Prove that the constant sequence {c}2
converges to c.
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Let € > 0. Take N =0 (or N = 588, or N = —10000000,
or any other real number). For any natural number n > N,
we have |a, —¢| = 0 < e. Thus the sequence converges to c.

2) Prove that the sequence { - converges to 0.
7n
n=1

(3) Let {an}:>, be a sequence. Suppose we know that {a,}5%,
converges to 1. Prove that there is a natural number n € N
such that a,, > 0.

Take € = 1. By definition of converges to 1, there is some
N such that for all n > N, |a, — 1| < 1, and in particular
a, > 0. So, take any natural number greater than n, and
the conclusion follows.

n+11

(4) Prove or disprove: The sequence { o S el

converges to 0.

Take ¢ = 1/2. We claim that there is no N such that
for all n > N we have |a, — 0] < 1/2. Indeed, given N,
take any n to be any natural number greater than N. Then
a, = 1/2+1/2n > 1/2, so |a,| > 1/2. Thus, there is
no N satisfying the desired property. This means that the
sequence does not converge to 1/2.

(5) Prove or disprove: The sequence {a,}>°; where

1 if n=10™ for some m € N
A =
0 otherwise

converges to 0.

Take ¢ = 1/2. We claim that there is no N such that for
all n > N we have |a, — 0] < 1/2. Indeed, let N be any
real number. Let m be a natural number larger than N,
and n = 10™. Then n = 10™ > m > N, and a,, = 1, so
|a, — 0] =1 > 1/2. This shows the claim, and hence that
the sequence does not converge to 0

Definition 8.1. A sequence {a,}°° is convergent if there is a real
number L such that {a,}°, converges to L. Otherwise, it is said to
be divergent.
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n=1

(6) In this problem, we will prove that the sequence {(—1)"
divergent.

e Proceed by contradiction and suppose it converges to L.

e Apply the definition of “converges to L” with ¢ = %, SO we

get some .

e Take an odd integer n bigger than N: what does this say

about L7

e Take an even integer n bigger than N: what does this say
about L7

e Conclude the proof.

Proof. We proceed by contradiction: Suppose the sequence did con-
verge to some number L. Our strategy will be to derive a contra-
diction by showing that such an L would have to satisfy mutually
exclusive conditions.

By definition, since the sequence converges to L, we have that for
every € > 0 there is a number N such that |(—1)" — L| < ¢ for all
natural numbers n such that n > N. In particular, this statement
is true for the particular value ¢ = % That is, there is a number
N such that |(—1)" — L| < % for all natural numbers n such that
n > N. Let n be any even natural number that is bigger than N.
(Certainly one exists: we know there is an integer bigger than N
by Theorem Pick one. If it is even, take that to be n. If it is
odd, increase it by one to get an even integer n.) Since (—1)" =1
for an even integer n, we get

1
1-L|< <
1-I <

and thus % <L< %
Likewise, let n be an odd natural number bigger than N. Since
(—1)" = —1 for an odd integer n, we get

1
—-1-L| <=
| <3

and thus —% <L < —%. But it cannot be that both L > % and
L< -1

We conclude that no such L exists; that is, this sequence is di-
vergent. [




24

9. SEPTEMBER 20, 2022

Example 9.1. Let’s prove the sequence {(—1)"}>2, is divergent. This
means that there is no L to which it converges.

Proof. We proceed by contradiction: Suppose the sequence did con-
verge to some number L. Our strategy will be to derive a contradic-
tion by showing that such an L would have to satisfy mutually exclusive
conditions.

By definition, since the sequence converges to L, we have that for
every € > 0 there is a number N such that |(—1)" — L| < ¢ for all
natural numbers n such that n > N. In particular, this statement is
true for the particular value € = % That is, there is a number N such
that [(—1)" — L| < 3 for all natural numbers n such that n > N. Let
n be any even natural number that is bigger than N. (Certainly one
exists: we know there is an integer bigger than N by Theorem [5.3|
Pick one. If it is even, take that to be n. If it is odd, increase it by one
to get an even integer n.) Since (—1)" = 1 for an even integer n, we
get

1
1-L| < -
-1 <
andthus%<L<%.

Likewise, let n be an odd natural number bigger than N. Since
(—1)" = —1 for an odd integer n, we get

1
|—1—M<§
and thus —% < L < —%. But it cannot be that both L > % and
L< -1
We conclude that no such L exists; that is, this sequence is divergent.

U

Proposition 9.2. If a sequence converges, then there is a unique num-
ber to which it converges.

Proof. Recall that to show something satisfying certain properties is
unique, one assumes there are two such things and argues that they
must be equal. So, suppose {a, }22; is a sequence that converges to L
and that also converges to M. We will prove L = M.

By way of contradiction, suppose L # M. Then set € = @ Since
we are assuming L # M, we have € > 0. According to the definition of
convergence, since the sequence converges to L, there is a real number
N; such that for n € N such that n > N; we have

la, — L| < e.
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Also according to the definition, since the sequence converges to M,
there is a real number N5 such that for n € N and n > Ny we have

la, — M| < e.

Pick n to be any natural number larger than max{ Ny, N2} (which exists
by Theorem [5.3]). For such an n, both |a, — L| < ¢ and |a, — M| < &
hold. Using the triangle inequality and these two inequalities, we get

L= M| <|L—=an|+|M—a,| <e+e.

But by the choice of &, we have ¢ +¢ = 2|L — M|. That is, we have
deduced that |L — M| < 2|L — M| which is impossible. We conclude
that L = M. O

From now on, given a sequence {a,}>, and a real number L, will
we use the short-hand notation

lim a, = L
n—o0

to mean that the given sequence converges to the given number. For
example, we showed above that

. 2n—1 2
im =-.
nsoodn+1 5
But, to be clear, the statement “lim,, ,., a, = L” signifies nothing more
and nothing less than the statement “{a,}>°, converges to L”.

Here is some terminology we will need:

Definition 9.3. Suppose {a,}>°, is any sequence.

(1) We say {a,}>2 is bounded above if there exists at least one real
number M such that a, < M for all n € N; we say {a,}2, is
bounded below if there exists at least one real number m such
that a, > m for all n € N; and we say {a, }°2, is bounded if it
is both bounded above and bounded below.

(2) We say {a,}5°, is increasing if for all n € N, a,, < a,,41; we say
{a,}22, is decreasing if for all n € N, a,, > a,41; and we say
{a,}22, is monotone if it is either decreasing or increasing.

(3) We say {a,}22, is strictly increasing if for all n € N, a,, < a,41.
I leave the definition of strictly decreasing and strictly monotone
to your imaginations.

Remark 9.4. Be sure to interpret “monotone” correctly. It means
(Vn € Nya, < apy1) or (Vn € N,a, > a,41);
it does not mean

Vn € N7 (an S an-‘,—l) or (an Z an—i—l) .
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Do you see the difference?
Proposition 9.5. If a sequence {a,}>° | converges then it is bounded.

Proof. Suppose the sequence {a,}> ; converges to the number L. Ap-
plying the definition of “converges to L” using the particular value
¢ = 1 gives the following fact: There is a real number N such that if
n € Nand n > N, then |a, — L| < 1. The latter inequality is equivalent
toL—1<a,<L+1foralln>N.

Let m be any natural number such that m > N, and consider the
finite list of numbers

al,ag,...,am_l,L—I—l.

Let b be the largest element of this list. I claim the sequence is bounded
above by b. For any n € N, if 1 <n < m — 1, then a, < b since in
this case a, is a member of the above list and b is the largest element
of this list. If n > m then since m > N, we have n > N and hence
a, < L+ 1 from above. We also have L +1 < b (since L + 1 is in the
list) and thus a,, < b. This proves a,, < b for all n as claimed.

Now take p to be the smallest number in the list

al,ag,...,am_l,L— 1.

A similar argument shows that a, > p for all n € N. O

10. SEPTEMBER 22, 2022

(1) For each of the following sequences which of the following adjec-
tives apply: bounded above, bounded below, bounded, (strictly)
increasing, (strictly) decreasing, (strictly) monotone?

(a) {%} el

(b) The Fibonacci sequence {f,}>°; where f; = f» = 1 and
fon = fn1+ fn_g for n > 3.

(c) {(=1)"}3

(d) {5+ (1)L,

(a) bounded, strictly decreasing, strictly monotone
(b) bounded below, increasing, monotone

(c) bounded

(d) bounded

(2) Prove or disprove the converse to Proposition 9.5.
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The sequence {(—1)"}22, is bounded but divergent, so
the converse is false.

Example 10.1. (1) A constant sequence {c}>2; converges to c.
(2) The sequence {+}22, converges to 0.

Theorem 10.2 (Limits and algebra). Let {a,}°, be a sequence that
converges to L, and {b,}2, be a sequence that converges to M.

(1) If ¢ is any real number, then {ca,}>2; converges to cL.
(2) The sequence {a,, + b,}5>, converges to L + M.
(3) The sequence {a,b,}>2 | converges to LM.

1 [e.e]
(4) If L # 0 and a, # 0 for all n € N, then {—} converges

an ) p=1
to z _
(5) If M # 0 and b, # 0 for all n € N, then {Z—n} converges
nJ)n=1
L
to M

(end of theorem, back to problems)

(3) Use Theorem 10.2 and Example 10.1 to show that the sequence
{2+ 5/n —7/n?}°° | converges to 2.

The constant sequence {2}22; converges to 2 by Ex 10.1
part 1. The sequence {5/n}>, = {5-1/n}>°, converges
to 5-0 =0 by Ex 10.1 part 2 and Thm 10.2 part 1. The
sequence {—7/n?}>°, = {-T7-1/n-1/n}°2, converges to
—7-0-0 = 0 by Ex 10.1 part 2, Thm 10.2 part 1, and
Thm 10.2 part 3. Thus, by Thm 10.2 part 2, the sequence
{245/n—T/n?}2>, converges to 2+0+0 = 2 by Thm 10.2
part 2.

(4) Use Theorem 10.2 and Example 10.1 to show that the sequence
2n+3

3. converges to %
(5) Use Theorem 10.2 to show that if {a,}>>, converges to L, and

{b,}52, converges to M, then {a, —b,}>2; converges to L — M.
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By Thm 10.2 part 1, {—b,}32, converges to —M. Then
by Thm 10.2 part 2, {a, — b,}22; = {an + (=b,)}22, con-
verges L+ (—M) =L — M.

(6) Prove or disprove the following converse to part (2): If {a, +
b, }o2 | converges to L + M then {a,}>°, converges to L and
{b,}52, converges to M.

Take {an}y, = {(=D"}L, and {b.};2, =
{(=1)"*1}% .. Then {a, + b,}°2, = {0}°2, converges to 0,
but neither {a,}°°; nor {b,}°°, converges.

(7) Prove part (1) of Theorem 10.2 in the special case ¢ = 2 by
following the following steps:
e Assume that {a,}°, converges to L.
e We now want to show that {2a,}°°; converges to some-
thing. We know what we have to write next!
e Now we do some scratchwork: we want an N such that for
n > N we have |2a,, — 2L| < €. Factor this to get some
inequality with a,,. How can we use our assumption to get
an N that “works”?
e Complete the proof.
(8) Prove part (1) of Theorem 10.2.
(9) Prove part (2) of Theorem 10.2.
(10) Prove part (3) of Theorem 10.2.

11. SEPTEMBER 27, 2022

Last time we looked at:

Theorem 10.2 (Limits and algebra). Let {a,}>2; be a sequence that
converges to L, and {b,}>°; be a sequence that converges to M.

(1) If ¢ is any real number, then {ca,}>2; converges to cL.

(2) The sequence {a, + b,}2, converges to L + M.

(3) The sequence {a,b,}>2; converges to LM.
1 oo

(4) If L # 0 and a, # 0 for all n € N, then {—} converges
Qn

n=1

to —.
°T
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(5) If M # 0 and b, # 0 for all n € N, then {Z—n} converges

to —.
° M

The following is another useful technique:

Theorem 11.1 (The “squeeze” principle). Suppose {a,}5°, {bn}2,,
and {c,}°, are three sequences such that {a,}5°, and {c,}>, both
converge to L, and a,, < b, < ¢, for alln. Then {b,}2, also converges
to L.

Proof. Assume {a,}22, and {c,}32, both converge to L and that a, <
b, < ¢, for all n € N. We need to prove {b,}°°, converges to L.

Pick € > 0. Since {a,}32, converges to L there is a number N; such
that if n € Nand n > N then |a,—L| < € and hence L—¢ < a,, < L+e.
Likewise, since {c,}°°; converges to L there is a number Ny such that
ifneNandn > Ny then L — e <c¢, < L+e¢. Let

N = maX{Nl, NQ}

If n e Nand n > N, then n > N; and hence L — ¢ < a,, and n > N,
and hence ¢, < L + ¢, and also a,, < b, < ¢,. Combining these facts
gives that for n € N such that n > N, we have

L—e<b,<L+e¢
and hence |b, — L| < e. This proves {b,}3>, converges to L. O

Example 11.2. We can use the Squeeze Theorem to give a short proof
that {5+ (—1)"+}22, converges to 5. Note that Theorem [10.2| alone
cannot be used in this example. However, from Theorem [10.2] it follows
that {5 — 1}>°, and {5+ £}>2, both converge to 5. Then, since

1 1 1
B— = <54 (=1)"— <5+
n n n

for all n, our sequence also converges to 5.

When I introduced the Completeness Axiom, I mentioned that, heuris-
tically, it is what tells us that the real number line doesn’t have any
holes. The next result makes this a bit more precise:

Theorem 11.3. Every increasing, bounded above sequence converges.

Proof. Let {a,}>2, be any sequence that is both bounded above and
increasing.

(Commentary: In order to prove it converges, we need to find a
candidate number L that it converges to. Since the set of numbers oc-
curring in this sequence is nonempty and bounded above, this number
is provided to us by the Completeness Axiom.)
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Let S be the set of those real numbers that occur in this sequence.
(This is technically different that the sequence itself, since sequences
are allowed to have repetitions but sets are not. Also, sequences have an
ordering to them, but sets do not.) The set S is clearly nonempty, and
it is bounded above since we assume the sequence is bounded above.
Therefore, by the Completeness Axiom, S has a supremum L. We will
prove the sequence converges to L.

Pick ¢ > 0. Then L — ¢ < L and, since L is the supremum, L — ¢
is not an upper bound of S. This means that there is an element of S
that is strictly bigger than L —e. Every element of S is a member of the
sequence, and so we get that there is an N € N such that ay > L — €.

(We will next show that this is the N that “works”. Note that, in
the general definition of convergence of a sequence, N can be any real
number, but in this proof it turns out to be a natural number.)

Let n be any natural number such that n > N. Since the sequence
is increasing, ay < a, and hence

L—cs<any <a,.

Also, a,, < L since L is an upper bound for the sequence, and thus we
have

L—e<a, <L.

It follows that |a, — L| < e. We have proven the sequence converges
to L. ]

Theorem 11.4 (Monotone Converge Theorem). Every bounded mono-
tone sequence converges.

Proof. 1f {a, }5°, is increasing, then this is the content of Theorem|[11.3|
If {a, }22, is decreasing and bounded, consider the sequence {—a, }5° .
If a, < M for all n, then —a,, > —M for all n, so {—a,}°, is bounded
below. Also, since a,, > a4, for all n, we have —a, < —a,; for all
n, so {—a,}52, is increasing. Thus, by Theorem [11.3] {—a,}32, con-
verges, say to L. Then by Theorem [10.2(1), {a,}32, = {—(—an)}52,
converges to —L. 0

Example 11.5. Consider the sequence {a,}> ; given by the formula

_1 1 1 1
an =1t gttt
We will use the Monotone Convergence Theorem to prove that this
sequence converges.
First, we need to see that the sequence is increasing. Indeed, for

every n we have that a,1 = a, + aglﬂ > ay,.
n
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Next, we need to show that it is bounded above. Observe that

1 1 1
Clnzl—i—?—l—?—f—"'—i-ﬁ
< -y
- +1 2+2 3+ (n—1)n
1 1 1 1
14 (=— )+ (=—= S
+(7-3) (5 3)+ =)
1
=1+1-——,
n

so we have a,, < 2 for all n. This means that {a, }>2; is bounded above
by 2.

Hence, by the Monotone Convergence Theorem, {a,}°; converges.
Leonhard Euler was particularly interested in this sequence, and was
able to prove that it converges to = This requires some other ideas,

&
so we won’t do that here.

12. SEPTEMBER 29, 2022

Which of the following implications about sequences hold in general?
Either mention a relevant theorem or give a counterexample.

(a) monotone = convergent (d) increasing + convergent
(b) convergent = bounded —> bounded
(c) bounded + decreasing (e) convergent = monotone
—> convergent (f) bounded = convergent
(a) False: {n}c2,
(b) True: (Every convergent sequence is bounded.)
(¢) True: Monotone Convergence Theorem
(d) True: (Every convergent sequence is bounded.)
(e) False: {%}le
(f) False: {(—1)"}>,

It is sometimes useful to distinguish between sequences like {(—1)"}22,
that diverge because they “oscillate”, and sequences like {n}>2 ; that
diverge because they “head toward infinity”.

(I) In intuitive language, a sequence converges to L if no matter
how close we want or sequence to be to L, all values past some
point are at least that close. Intuitively, a sequence diverges
to +o00 if no matter how large we want our sequence to be, all
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values past some point are at least that large. Write a precise
definition for a sequence to diverge to 4o0.
(II) Write a precise definition for a sequence to diverge to —oc.

(I) A sequence {a,}5>, diverges to +oo if for every M € R,
there is some N € R such that for every natural number
n > N, we have a,, > M.

(IT) A sequence {a,}2, diverges to —oo if for every m € R,
there is some N € R such that for every natural number
n > N, we have a, < m.

(1) Carefully write the logical negation of “{a,}5°, diverges to
+0o0” in simplified form.

There exists M € R such that for every N € R, there
exists a natural number n > N with a,, < M.

(2) Use the definition to prove that the sequence {y/n}°, diverges
to +o0.

Let M € R. [Scratchwork: We need some N such that
if n > N then \/n > M. This inequality is equivalent to
n > M?, so take N = M2] Take N = M?. Let n > N be
a natural number. Then \/n > VN = VM2 = |[M| > M.
This shows that {y/n}°, diverges to +oc.

(3) Prove that if a sequence {a,}>, diverges to +oo then it is not
bounded above.

We prove the contrapositive. Suppose that {a,}>?; is
bounded above, say by M. Suppose, to obtain a contra-
diction that {a,}>°, diverges to +o0o. Then applying the
definition with the number M, we have that there is some
N such that for all n > N, a,, > M. But htere is no n for
which a,, > M, so this is a contradiction, so {a,}>°; does
not diverge to +ooc.

(4) Use to show that if a sequence diverges to 400 then it
diverges.
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Since every converges sequence is bounded, the conclusion
follows.

(5) Prove or disprove: If a sequence is not bounded above, then it
diverges to +o00.

A counterexample is given by the sequence {(—1)"n}5 .
It is not bounded above, since for any M, we can take an
even natural number n larger than M, and for this number,
(—1)"n =n > M. It does not diverge to +oo: take M = 0;
for any N € R, there is an odd natural number n larger
than N, and for this n, we have (—1)"n = —n < 0 = M.

(6) Prove or disprove: If a sequence diverges to +oo then it is
increasing.

A counterexample is given by the sequence given by a; =
3, a, = n for n > 1. It is not increasing since a; =3 > 2 =
as. However, it diverges to +oo since, given M, we can take
N = M, and for any n > N, we have a, =n > N = M.

(7) Prove or disprove: If a sequence is increasing and not bounded
above, it diverges to co.

To prove it, let {a,}°, be increasing and not bounded
above. Take M € R. Since it is not bounded above, there is
some N € N such that ay > M. Then, for this N, for any
n > N we have a,, > ay since the sequence is increasing, so
a, > M. This shows the sequence diverges to +oc.

13. OCTOBER 4, 2022

We will now embark on a bit of detour. I've postponed talking about

proofs by induction, but we will need to use that technique on occasion.
So let’s talk about that idea now.

The technique of proof by induction is used to prove that an infinite

sequence of statements indexed by N

P17P27P37"'
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are all true. For example the equation
n(n+1)
2
holds for all n € N. We get one statement for each natural number:

1424 +n=

1-2
P 1 =—
2

[\]
w

P2: 1+2 =

P32 1—|—2—|—3 =

w
DO« DNO| -
=~

Such a fact (for all n) is well-suited to be proven by induction.
Here is the general principle:

Theorem 13.1 (Principle of Mathematical Induction). Suppose we are
given, for each n € N, a statment P,. Assume that Py is true and that
for each k € N, if Py, is true, then Py is true. Then P, s true for all
n € N.

“The domino analogy”: Think of the statements P;, P, ... as domi-
noes lined up in a row. The fact that P, = Py, is interpreted
as meaning that the dominoes are arranged well enough so that if one
falls, then so does the next one in the line. The fact that P; is true
is interpreted as meaning the first one has been knocked over. Given
these assumptions, for every n, the n-th domino will (eventually) fall
down.

The Principle of Mathematical Induction (PMI) is indeed a theorem,
which we will now prove:

Proof. Assume that P; is true and that for each k£ € N, if P, is true,
then Pgiq is true. Consider the subset

S={neN| P, is false}

of N. Our goal is to show S is the empty set.

By way of contradiction, suppose S is not empty. Then by the Well-
Ordering Principle, S has a smallest element, call it £. (In other words,
P, is the first statement in the list Py, P, ..., that is false.) Since P,
is true, we must have £ > 1. But then / — 1 < ¢ and so £ — 1 is not in
S. Since ¢ > 1, we have £ — 1 € N and thus we can say that P,_; must
be true. Since P, = Py, for any k, letting £k = ¢ — 1, we see that,
since P,_1 is true, P, must also by true. This contradicts the fact that
¢ € S. We conclude that S must be the empty set. 0



35

The above proof shows that the Principle of Mathematical Induction
is a consequence of the Well-Ordering Principle. The converse is also
true.

Example 13.2. Let’s prove that the formula

1
1+2+3+~~+n_@
for every natural number n. Here, P is
k(k+1
1+2+3+---+kz=(T+).
For P, we have 1 = % is true. Now we show P implies Pyq. Let k
be a natural number and assume that
E(k+1
1+2+3+---+k:%.
Then
14243+ +k+(k+1)=1+24+3+---+k)+(k+1)
kE(k+1
= % + (k + 1)
_ k(k+1) N 2(k+1)
2 2
(kDR +2)  (k+D((k+1)+1)
B 2 B 2 ’
which is P;,1. Thus we have proven the equality for all natural numbers
n by induction. 0

Example 13.3. Let us show that for every real number z > —1, and
every natural number n € N the inequality (1 + z)" > 1 + nx.

Fix a real number x > —1. We show that (1 + z)" > 1 + nx for all
natural numbers n by induction. For n = 1, we have

14+ =14+2=1+1-2,

so the statement is true for n = 1. Let k be a natural number and
assume that

(1+2)" > 1+ ka.
Then,

(1+2)5 ! = (1+42)-(1+2)F > (1+2)(1+kr) = 1+ (k+D)a+ka? > 14+(k+1),

where we used that 1 + 2 > 0 in the first > (since x > —1) and that
22 > 0 in the second >. Thus, by induction, the inequality is true for
all n € N. O
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Induction is also closely related to the notion of a sequence defined
by recursion. Recall that we define a sequence {a, }>°, recursively by
specifying a value a; for the first value, and a formula for a, in terms
of a,_1 (or multiple earlier values in the sequence). The principle of
induction justifies that such a rule gives a well-defined value for every
n: if we take P, to be the statement that the formulas define value for
all of the first k terms aq, ..., ag, then P is true and P, = Py, so P,
is true for every n € N.

Proposition 13.4. For any real number r, there exists a strictly in-
creasing sequence of rational numbers that converges to r.

Proof. We will construct a sequence of rational numbers {g,}>2, such
that r—% < qn < rfor every n that is strictly increasing, and then show
that this sequence converges to r. By Density of Rational Numbers,
there exists a rational number ¢; such that r — 1 < ¢ < r. Given
q1, - - -, Qn, We define g, 1 recursively to be a rational number such that
max{r— n%l, Gn} < @u+1 < 7 again using Density of Rational Numbers.
To see that this rule makes sense, we observe that if we have constructed
Q1, - - -, qn by this rule, then ¢, < r, so max{r — n+r1, qn} < 1, and hence
Density of Rational number applies, so we can construct ¢,.; (and
hence we can construct ¢, for any n by this rule). Since

n — r )y imn ’I’L-‘rl

for every n, the sequence we obtain is strictly increasing. Since

1
r——<gq,<r
n

for every n and {r — % oo, converges to r, by the Squeeze Theorem,
the sequence {q,}2, converges to r. O

14. OCTOBER 6, 2022

Decimal expansions. In this worksheet, we are going to define deci-
mal expansions and prove the basic properties about them. To simplify
things, we are going to only deal with numbers between 0 and 1 (since
we get all the the rest by adding integers and taking negatives). Along
the way we will use induction and convergence of sequences in an im-
portant way. Before we define infinite decimal expansions, let’s review
finite decimal expansions.

(1) If d € {0,1,...,9} (i.e., d is an integer between 0 and 9), what
does the decimal number 0.d mean? Express it as a rational
number.
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d

10

(2) If dy,ds,...,d, € {0,1,...,9} (i.e., dy,...,d, are a bunch of
integers between 0 and 9, which may or may not have repeats),
convince yourself that the decimal number 0.d;ds - --d,, in the
way that we commonly use it is shorthand for

dy dy d,
0.didy-+-dyy, = — 4+ — 4+ -+ —.
1 o T T T Tom
Let’s say that a sequence of the form {d,, }°°, is a digit sequence if
d, €{0,1,...,9} for all n. (That is a digit sequence is just a sequence
of integers between 0 and 9.) Given a digit sequence {d,}32,, define
another sequence {D,,}°°, by the rule

dy
Dy = —-
T
dy  dy
Dy = — 4 2
2= 100 T 102
dy  dy d,
D, = L 4 2 -
00 102 T 1o

For example, for the digit sequence 2,2, 2, ..., the corresponding {D,, }22 ,
sequence is

2 2 2 2 2 2

10° 10 T100° 10 T 100 T 1000

We say that a digit sequence {d, }52, represents a real number r if the
sequence {D,,}>° ;| converges to r, and in this case we write

0.d1d2d3d4 e =T

In order to prepare for proving things about decimal expansions, we
need a fact about geometric series.
(1) Let z and a be real numbers.
(a) Prove that for every n € N,

1—2)A4+z+2®>+2°+- +2")=1—2"
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We proceed by induction on n. First we check forn = 1:
l-2)1l+2)=14+a—2—2°=1—2"""

so the statement is true for n = 1. Suppose the equality
holds for k:

1—2)14+z+2®+2° 4+ 425 =12,
Then
(1—2)1+z+2*+2°+ -+ 2"
=(1—a)(1+a+a®+2° + - +2") + (")
—(1-2)1+z+2>+2° 4+ -+ 25+ (1 —2) (")

— 1 = gkt gkl k2 gk

and it holds for k£ + 1. Thus, the statement is true for
all n by induction.

(b) If x # 1, use (a) to show that for every n € N,

1— n+1
a+ax+ax2+---+ax”:a1—w
-

We have
1 — n+1
atar+ar*+---+ar" =a(l+ax+a?+2°+- - +2") = al—x
— X

(2) Use the definition (and perhaps the previous problem), but not
our previous expectations about decimal expansions, to answer
the following.

(a) What number does the digit sequence 2,3,0,0,0,0,0,...
represent?

(b) What number does the digit sequence 5,0,0,0,0,0,0,...
represent?

(c) What number does the digit sequence 9,9,9,9,9,9,9,...
represent?

(d) What number does the digit sequence 4,9,9,9,9,9,9, ...
represent?
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(c) D, = 19_0% = 1—(15)™"" converges to 1, so this

represents 1.
(d) 3.

(3) Let {d,}2, be any digit sequence. Prove that this sequence
represents some real number: i.e., that the corresponding se-
quence {D,,}22 , is convergent.

[Thus, every decimal expansion 0.djdsds - - - always gives us
a real number.]

Note that the sequence D, is increasing, and hence mono-

: 1—(1/10)*! n
tone. Since d, <9, D,, < %% =1-—(55)"" <1,

so it is bounded above. Thus D, is always convergent.

(4) In this problem, we will show that every real number r € [0, 1]
is represented by some digit sequence.

(a) Show that we can recursively define a digit sequence {d,, }°° ,
such that for every n € N, in the corresponding sequence
{D,}>,, we have 0 < 10"(r — D,,) < 1.

(b) Given a sequence as in part (a), show that {D,}>2, con-
verges to r.

[Thus, every number can be written as a decimal expansion

0.dydads -+ ]

Since 0 < 10r < 10, we can take an integer between 0
and 9 to be dy with d; <r < dy+1,s00 <r—d; <
1. If we have chosen dy,...,d, with 0 < 10"(r — D,,) <
1, then 0 < 10""(r — D,,) < 10 so we can choose d,, ;1
with d,y1 < 10" (r — D,) < dpy1 + 1, and hence 0 <
10" (r — D,,) — dpy1 < 1. We then just need to note that
10" (r — D) — dpyt = 1071 D, 1.

(5) Now we analyze uniqueness of decimal expansions. We will find
it useful to use the following corollary of the proof of the Mono-
tone Convergence Theorem: If {a, }7°, is a bounded increasing
sequence, {a,}52, converges to sup({a, | n € N}).

(a) Let {d,}5°, be any digit sequence, {D, }°°, be the corre-
sponding sequence, and r the number that it represents.
Let n be a natural number.
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(i) Show that D, < r and that D, = r if and only if
d; = 0 for all ¢ > n.

(i) Show that r < D, + & and that r = D, + 57 if
and only if d; =9 for all © > n.

(b) Let {d,}>°, and {e,}2, be two digit sequences with dj #
er for some k € N. Suppose that both digit sequences
represent the same number 7. Show that r = {3 for some
natural number m.

(c¢) Deduce that if r € [0,1] and r cannot be written as a
rational number with denominator a power of ten, then
there is a unique digit sequence that represents r.

[Thus, if r cannot be written as a rational number with
denominator a power of ten, then r has a unique decimal
expansion. |

(d) Show that if » € (0,1) and r can be written as a rational
number with denominator a power of ten, then there are
exactly two digit sequences that represent r: one with d; =
0 for all 7 greater than some k, and one with d; = 9 for all
1 greater than some k.

[Thus, if r has at most two decimal expansions, and always
has exactly one nonterminating decimal expansion. |

15. OCTOBER 20, 2022

We next discuss the important concept of a “subsequence”.

Informally speaking, a subsequence of a given sequence is a sequence
one forms by skipping some of the terms of the original sequence. In
other words, it is a sequence formed by taking just some of the terms
of the original sequence, but still infinitely many of them, without
repetition.

We'll cover the formal definition soon, but let’s give a few examples
first, based on this informal definition.

Example 15.1. Consider the sequence
7 if n is divisible by 3 and
an = . . .
~ if n is not divisible by 3.

If we pick off every third term starting with the term a3 we get the
subsequence

as, g, dg, . . .
which is the constant sequence

T T,
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If we pick off the other terms we form the subsequence
a1, G2, A4, a5, A7, Ag, A10, - - -

which gives the sequence
111111

Note that it is a little tricky to find an explicit formula for this sequence.

Example 15.2. For another, simpler, example, consider the sequence
{(=1)"L}22 . Taking just the odd-indexed terms gives the sequence
1 1 1 1 1
Loy

and taking the even-indexed terms gives the sequence

1111

TS
This time we can easily give a formula for each of these sequences: the

first is
1

{_Qn—l

Foct
and the second is .
{% }nzl .
Here is the formal definition:

Definition 15.3. A subsequence of a given sequence {a,}>, is any
sequence of the form
{ank}zozl

where

ny,ng, N3, ...
is any strictly increasing sequence of natural numbers — that is ny € N
and ngy1 > ng for all £ € N so that

n<ng <ng<<---.

Note that k is the index of the subsequence; i.e., the first term in
the subsequence is when k£ = 1, the second is when £ = 2 and so on.
The integer sequence {n;}2, is the sequence of indices of the original
sequence we choose to make the subsequence.

Example 15.4. Let {a,}°, be any sequence.

Setting ny = 2k — 1 for all £ € N gives the subsequence of just the
odd-indexed terms of the original sequence.

Setting ny = 2k for all £ € N gives the subsequence of just the
even-indexed terms of the original sequence.
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Setting n, = 3k — 2 for all k£ € N gives the subsequence of consising
of every third term of the original sequence, starting with the first.

Setting n, = 100 + k gives the subsequence that is that “tail end” of
the original, obtained by skipping the first 100 terms:

a101, @102, @103, @104, « - - -

Of course, there is nothing special about 100 in this example.
The following result is important:

Theorem 15.5. If a sequence {a,}2, converges to L, then every sub-
sequence of this sequence also converges to L.

We prepare with a lemma.

Lemma 15.6. Let by, by, ... be any strictly increasing sequence of nat-
ural numbers; that s, assume by, € N for all k € N and that by, < by
for all k € N. Then by, > k for all k.

Proof. Suppose by, b, ... is a strictly increasing sequence of natural
numbers. We prove b, > n for all n by induction on n. That is, for
each n € N, let P, be the statement that b,, > n.

Py is true since b; € N and so b; > 1. Given k € N, assume P, is
true; that is, assume b, > k. Since by.; > bp and both are natural
numbers, we have by > by +1 > k + 1; that is, Py, is true too. By
induction, P, is true for all n € N. O

Proof of Theorem[15.5. Let the sequence {a,}°; converge to L, and
take a subsequence {a,, }72, for some strictly increasing sequence n; <
ny < ng < --- of natural numbers.

Let € > 0. Since {a,}°, converges to L, there is some N € R such
that for all natural numbers n > N we have |a, — L| < . We claim
that the same N works to verify the definition of {a,, }?2, converges
to L for this €. Indeed, if £ > N, then n;, > N, so |a,, — L| < e. Thus,
{an, }32, converges to L. O

(1) True or false; justify.

1 [o¢]
(a) The sequence {2—} is a subsequence of the sequence
n

s n=1
1
n n:1‘
1 [e.e]
(b) The sequence {3 n 7} is a subsequence of the se-
n

().
quence § — .
n n=1
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1 o
(c) The constant sequence {5} is a subsequence of the

o n=1
1
sequence {— .
n n=1

(d) The constant sequences {—1}°°, and {1}22, are both sub-
sequences of the sequence {(—1)"}22 .
(e) The constant sequences {—1}7°, and {1}>°, are the only

two subsequences of the sequence {(—1)"}2 .

(a) True: take ny = 2k.

(b) True: Take ny = 3k + 7.

(c) False: The term 1/2 occurs only for n = 2, so we can’t
choose an increasing sequence of indices that yield this
value.

(d) True: take take ny = 2k + 1 and take ny = 2k, respec-
tively.

(e) False: The sequence itself is a subsequence (nj = k).

(2) Explain how the following Corollary follows from Theorem 15.5.
Corollary 15.7: Let {a,}°°, be any sequence.
(a) If there is a subsequence of this sequence that diverges,
then the sequence itself diverges.
(b) If there are two subsequences of this sequence that converge
to different values, then the sequence itself diverges.

These are special cases of the contrapositive.

(3) Use Corollary 15.7 to give a quick proof that the sequence
{(—=1)"}22, diverges.

It has subsequences that converge to different values.

(4) Prove or disprove:
(a) Every subsequence of a bounded sequence is bounded.
(b) Every subsequence of a divergent sequence is divergent.
(c) Every subsequence of a sequence that diverges to —oo also
diverges to —oo.
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(a) True: if m < a, < M for all n and ny < ng <mnz < ---
is a strictly increasing sequence of natural numbers,
then m < a,, < M for all k.

(b) False: The divergent sequence {(—1)"}°°, has a con-
vergent subsequence {1}9°,.

(c) True: Let ny < nyg < n3z < --- be a strictly increasing
sequence of natural numbers, and {a,, }32; is a subse-
gence. Let m € R. There is some N such that a, < m
for all n > N. We claim that this N works (for this
m) to show that {a,, }?2, diverges to —oo. Indeed, if
k > N, then ny > k > N, so a,, <m. Thus {a,, }32,
diverges to —oo.
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16. OCTOBER 25, 2022

Consider the points in the plane whose z-coordinates are integers
and y-coordinates are natural numbers. Starting at (0,1), zigzag like
S0:

(—4,5)  (=3,5) (72,5)' (71,551. (0,5) ‘(1,5) ‘”(2,5) ‘”(3,5) '”‘(4,5)

(747 4) (7374) (7274) (7174) (07 4) (174) (27 4) (374) (474) e

L) (30 (<21 (L) <01 (L) (@D (1) @1

This gives the list of points
(07 1)7 <_17 1)7 (07 2)7 (17 1)7 <_27 1)7 (_L 2)7 (07 3)7 (17 2)7 (27 1)? (_37 1)7 R

Now convert these to a list of rational numbers by changing (m, n) to ™
to get the sequence

0-101-2-1012 =3
171’2’17172732°17 17
of rational numbers. Call this sequence {w,}> ;. ( Even though you
didn’t want to know, we can give w,, by a formula as

—t?P4+t—1
no fn<t®—t
n—t22+2t—1
Wy = 3
— 2 —t+1
nt LT B
—n+t2+1

where ¢t = min{m € N | m? > n}.)

Proposition 16.1. There is a sequence {w,}? | of rational numbers
such that

(1) every rational number occurs in {w, }°, infinitely many times;

(2) every sequence of rational numbers is a subsequence of {w, }5° ,;
and

(3) every real number occurs as the limit of some subsequence of

{wn .
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Proof. (1) The idea is that every point (m,n) with m € Z and
n € N gets passed through by the zigzag at least once. Then,
given any rational number ¢ = a/b, we can choose b > 0 by
replacing a and b by their negatives if necessary. Then ¢ =

7= % = % = .-+, 80 it comes from infinitely many pairs, and
hence occurs infinitely many times.

(2) Let {g,}5°, be a sequence of rational numbers. We will realize
it as a subsequence of {w,}%; by constructing an increasing
sequence of natural numbers n; < ny < n3z < --- such that
Wy, = Q- Since ¢ € Q, there is some n; € N such that w,, = ¢
by part (a). Suppose that we have defined n; < -+ < n; such
that w,, = ¢, for Kk = 1,...,t. We claim that there is some
ngy1 such that ngy > nyp and wy,,, = qry1. Indeed, there are
infinitely many m € N such that w,, = q,41 by part (a), so at
least one of these values of m is greater than ny (since there are
only fintiely many natural numbers less than or equal to nyg).
Taking nyi1 to be m, we can continue the sequence, and we
thus obtain such a sequence by recursion.

(3) Given r € R, we know that there exists a sequence of rational
numbers that converges to r (moreover, there exists a strictly in-
creasing one). This sequence can be obtained as a subsequence
of {w,}22, by part (b), so we are done. O

On the other hand, there is no sequence that actually contains every
real number. To prove this, we will use decimal expansions, as discussed
earlier.

Recall that if dy,ds,ds, ... is a sequence of “digits”, where d; €
{0,1,2,3,4,5,6,7,8,9} for every i, then the sequence {D,,}>° |, where

I L
"10t 102 107
converges, and we say that .dydxds--- is a decimal expansion for the

real number r = lim,,_, D,,.

Theorem 16.2 (Cantor’s Theorem). There is no sequence that con-
tains every real number.

Proof. By way of contradiction, suppose {a, }°°; is a sequence in which
every real number appears at least once. Write each member of this
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sequence in its decimal form, so that
a; = (integer part).dy 1d; ody 3 - - -
ay = (integer part).ds1doads s - - -

as = (integer part).d3,1d372dg,3 s

where each d;; € {0,1,2,3,4,5,6,7,8,9} is a digit. Now form a real
number x as 0.ejeqes - - - where the ¢;’s are digits chosen as follows: Let

T ifdii <5
Y3 ifdy > 5.

In particular, e; # d;; for every 7. This means that the digit se-
quence eq, e, e3,... is not equal to any of the other digit sequences
di1,di2,d;3, ... for any i, because the i-th values are different. More-
over, the number x has a unique decimal expansion (since the only time
two decimal expansions give the same number is one is eventually all
0’s and the other is eventually all 9’s), so a; # « for all i € N.

Thus z is not a member of this sequence, contrary to what we as-
sumed. O

Our next big theorem has a very short statement, but is surprisingly
tricky to prove.

Theorem 16.3 (Bolzano-Weierstrass Theorem). Every sequence has
a monotone subsequence.

The proof of this theorem requires a preliminary lemma.

Lemma 16.4. Let {a,}>2, be a sequence.

(1) If the set of values of the sequence {a, | n € N} does not have
a mazximum value, then {a,}°, has a subsequence that is in-
creasing.

(2) If the set of values of the sequence {a, | n € N} does not have
a minimum value, then {a,}, has a subsequence that is de-
creasing.

Proof. (1) Assume that the set of values {a,, | n € N} does not have
a maximum value.

We define a subsequence recursively. We will recursively
choose natural numbers ni,ng,n3,... so that n, < ngyq for
all £ and a,, < ay,,,.

We start by setting n; = 1.

If we have chosen ny, then let b = max{ai,...,a,, }.
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We claim that there is some m > n; such that a,, > b.
To obtain a contradiction, suppose otherwise. Then for any
n € N, either n > n; and a, < b by assumption, or n < ny
and a, < b, since a, is on the list of things of which b was the
maximum. Then b is the maximum of {a, | n € N}, which
yields a contradiction. Thus, there is some m > n; such that
a,, > b, and we can choose m = ny,1. Thus, we can define such

a sequence recursively.
(2) Similar to (1), or apply (1) to {—a,}22,. O

Proof of Bolzano-Weierstrass Theorem [16.3. Let {a,}>°, be any se-
quence. Recall that our goal is to prove it either has an increasing
subsequence or it has a decreasing subsequence. This is equivalent to
showing that if it has no increasing subsequences, then it does have at
least one decreasing subsequence. So, let us assume it has no increasing

subsequences.
We will prove it has at least one decreasing subsequence by con-
structing the indices ny < ny < --- of such a subsequence recursively.

By the contrapositive of part (1) Lemma[16.4], since {a,}2, does not
contain any increasing subsequences, we know that {a, | n € N} has a
maximum value. That is, there exists a natural number n; such that
ap, > G, for all m > 1.

For any k, given ny, the subsequence ay, 41, @p,+2, @, +3, - . . also has
no increasing subsequence, since a subsequence of such a sequence
is a subsequence of the original sequence too. Thus, it must have
a maximum value again by part (1) Lemma [16.4} choose ny41 such
that a,,,, = max{an,4+1,an,+2,an,+3,-..}. By construction, we have
ng1 > ng. Thus, this gives a recursive definition for ny.

For any k, note that a,, is the maximum of a set that contains
Qn,,, (since it is later in the sequence). It follows that a,, > an,,,.
That is, we have constructed a decreasing subsequence of the original
sequence. O

Corollary 16.5 (Main Corollary of Bolzano-Weierstrass Theorem).
Fvery bounded sequence has a convergent subsequence.

Proof. Suppose {a,}22; is a bounded sequence. By the Bolzano-Weierstrass
Theorem it admits a monotone subsequence {a,, }?,, and it
too is bounded (since any subsequence of a bounded sequence is also
bounded.) The result follows since every monotone bounded sequence
converges by the Monotone Convergence Theorem [I1.4] U
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17. OCTOBER 27, 2022

You can use any basic trig facts below to answer the following ques-
tions.

(1) Explain but don’t prove: Is {cos(mn)}>2; a subsequence of
{cos(n)}32,?

(2) Prove or disprove: The sequence {cos(n)}>°; has a conver-
gent subsequence.

(3) Prove or disprove: The sequence {cos(n)}22 , has a constant
subsequence.

(4) Prove or disprove: The sequence {cos(n)}>2; has a subse-
quence that converges to some x > 1.

(a) No; to get a subsequence we would need have natural
numbers inside the cosine, not multiples of .

(b) True: cos(n) is bounded, so there is a convergent sub-
sequence by Main Corollary of Bolzano-Weierstrass.

(c) False: in fact, cos(n) never takes the same value twice.
If it did, we would have cos(n) = cos(m) for natural
numbers m # n, so m —n = 2rk or m +n = 27k,

for some integer k, which would make m = "= or
™= ”12;", contradicting that 7 is irrational.

(d) False: if there is a subsequence converging to x > 1,
let e =2 —1 > 0. Then for some K, for all £k > K,
| cos(ng) — 1] < &, which implies cos(ng) > 1, which is
a contradiction.

Given any two sets S and T, a function from S to T, written f : S —
T, is a “rule”|that assigns to each element s € S a unique element ¢t € T'.
The set S is called the domain of f. We will generally consider functions
from some set of real numbers to R. We often specify functions by
formulas; when we do this the take the domain to be the set of all real
numbers for which the formula evaluates to a unique real number. In

Here’s a real definition: a function from S to T is a subset G C S x T of ordered
pairs of elements of S and T" with the property that for all s € S there is a unique
t € T such that (s,t) € G; we write f(s) for this element ¢.
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particular,

202 — 2

flx)=2x+2 and g¢g(z)= —

are not the same function, even though their values agree for all x # 1,
since their domains are different.

Definition 17.1. Let S be a subset of R. Let f : S — R be a function,
and a and L be real numbers. We say that the limit of f as x approaches
a is L provided:

for any € > 0 there exists § > 0 such that if 0 < [z —a| <
J, then z is in the domain of f and |f(z) — L| < e.

If this happens, we write lim f(z) = L to denote this.
Tr—a

(1) UNPACKAGING PARTS OF THE DEFINITION.
(a) Describe {x € R | 0 < |z — 2| < 1} as a union of two open
intervals.
(b) For a general a € R and § > 0, describe {x € R | 0 <
|z — al] < 0} as a union of two open intervals.
(¢) Focusing on the “domain” part of the definition, if the limit

of f as x approaches a is L, then f must at least be defined
(where?).

(a) (1,2)U(2,3)
(b) (a—d,a) U (a,a+9).
(c) on some open intervals to the left and to the right of a.

(2) THE € — § GAME.
(a) Player 0 starts by graphing a function f (like a familiar
one from calculus) and specifies an z-value a and a y-value
L that (based on previous calculus knowledge) they think
makes lim,_,, f(x) = L true. [The graph should be large.]
(b) Player 1 choses an €. This is how close we would like our
function to be to L. Thus, ¢ goes up and down from L
(corresponding to | f(z) — L| < ). Draw horizontal dotted
lines with y-values L —e and L +¢. [The ¢ should be large
enough for people to see and have room to work in the
picture.]
(c) Player 2 must find a § such that every z € (a — d,a) U
(a,a+9) is
e in the domain of f, and
e has an output f(z) within (L — ¢, L + ¢).
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Draw vertical dotted lines for the x-values a — 0 and a + 9.
[Everyone in the team can assist player 2!]

(d) Repeat with the same graph, players 1& 2 switching roles
(and a new ¢).

(3) Draw the graph of g(z) =
this function, a = 1 and L = —3. What happens?

202 — 2
T T Play the ¢ — 0 game with

So long as € < 7, it is impossible for Player 2.

22 — 2
* 1 It is true that lim, _,; g(x) = 4.

(4) Consider the function g(x) =

(a) I claim that for ¢ = 3, the choice 6 = 1.5 “works” to make
the rest of the definition true. Verify this.

(b) Find a ¢ that “works” for e = 1.

(c) Find a ¢ that “works” for ¢ = 1/2.

(d) Find a ¢ that “works” for € > 0.

(a) Let 0 < |[x — 1] < 1.5, s0 =5 < 2 < 2.5 and = # 1.
Then f(z) is defined, since x # 1. Also, |f(x) — 4| =
|2z+4+2—4| = |22—2| < 2:1.5 = 3 = e since [z —1] < 1.5.

(b) Take § = .5. Let 0 < |z — 1| < 5,80 .5b < x < 1.5
and  # 1. Then f(z) is defined, since x # 1. Also,
|f(z) —4| =22 4+2—-4] =20 —-2|<2-5=1=c¢
since |z — 1| < .5.

(c) Take 6 = .25. Let 0 < |z — 1] < .25, 50 .7Th <z < 1.25
and x # 1. Then f(z) is defined, since = # 1. Also,
|f(z) —4]|=120+2—-4| =2z —2|<2-25=5=c¢
since |z — 1| < .25.

(d) Take 6 = ¢/2. Let 0 < |x — 1| < /2. Then f(z) is
defined, since = # 1. Also, |f(z) — 4| = |22 +2 — 4] =
|20 —2| < 2-¢/2 =€ since |[x — 1| < g/2.

202 — 2
(5) Consider the function g(x) = ’ T It is not true that
$ —

lim, ,; g(z) = —3. I claim that for ¢ = 1, there is no choice
of & > 0 that “works” to make the rest of the definition true.
Verify this.



52

Let § > 0. Take x = 1+ §/2. Then |z — 1| = /2
is between 0 and 6, and f(x) = 2x +2 =4+ > 4, so
[f(2) = (=3)[ = [f(x) +3[>T7T>1=e

18. NOVEMBER 1, 2022
Example 18.1. Let f be the function given by the formula

o) = 5% — 5

r—1
Recall our convention that we interpret the domain of f to be all real
numbers where this rule is defined. So, f: S — R where S =R\ {1}.
I claim that the limit of f(z) as = approaches 1 is 10. To prove it:

Pick € > 0.

(Scratch work: Since f is defined at all points other that 1, the
condition about f being defined for all z such that 0 < |z —a| < d
will be met for any choice of 6. We need |f(x) — 10| < € to hold.
Manipulating this a bit, we see that it is equivalent to |z — 1] < £.
Thus setting § = £ is the way to go. Back to the proof....)

Let 6 = £. Pick x such that 0 < |z — 1] < ¢. Then x # 1 and hence

f is defined at . We have

9 2_5_1 1 21
F(2) —10] = | 2220 o = |2z = 1010y 45e” — 10w+ 5
_ r—1 -1
5(22 — 92 1 5(x —1)?
_ (x a:~|—): (z - 1) = |5z — 5| =5lr — 1] < bj =e.
rx—1 r—1

We have shown that for any € > 0 there is a 6 > 0 such that if
0 < |z—1] < 4, then f is defined at = and |f(z) — 10| < €. This proves
lim, ,; f(x) = 10.

Example 18.2. Let’s do a more complicated example: Let f(z) = z?

with domain all of R. T claim that lim,_,» > = 4. This is intuitively
obvious but we need to prove it using just the definition.

Proof. Pick ¢ > 0.

(Scratch work: The domain of f is all of R and so we don’t need to
worry at all about whether f is defined at all. We need to figure out
how small to make § so that if 0 < |z — 2| < § then |22 — 4] < e. The
latter is equivalent to |z —2||z+2| < e. We can make |z — 2| arbitrarily
small by making ¢ aribitrarily small, but how can we handle |z + 2|7
The trick is to bound it appropriately. This can be done in many ways.
Certainly we can choose ¢ to be at most 1, so that if |z — 2| < ¢ then
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|z — 2] < 1 and hence 1 < z < 3, so that |z + 2| < 5. So, we will
be allowed to assume |z + 2| < 5. Then |z — 2||x + 2| < 5|z — 2| and
5|z — 2| < € provided |z — 2| < £. Back to the formal proof. . .)

Let 0 = min{, 1}. Let x be any real number such that 0 < [z — 2| < 0.
Then certainly f is defined at x. Since § < 1 we get |[x — 2| < 1 and
hence |z + 2| < 5. Since § < £ we have [r — 2| < £. Putting these
together gives

1f(x) — 4| = |a% — 4| = |z — 2]z + 2| < |z — 2|5 < 25:5.
This proves lim,_,o 2% = 4. O

Let’s give an example of a function that does not have a limiting
value as x approaches some number a.

Example 18.3. Let f(z) = -5 with domain R \ {3}. T claim that
the limit of f(z) as x approaches 3 does not exist. To prove this, by
way of contradiction, suppose the limit of f(x) as x approaches 3 does
exist and is equal to L. Taking € = 1 in the definition, there is a § > 0
so that if 0 < |x — 3| < 0, then !ﬁ — L| < 1. We can find a real
number x so that both 3 < 2 <4 and 0 < |z — 3| < ¢ hold. For such
an r we have ‘é —L! < 1 and so

1
—1l<L<—+1
x—3 :z:—3+’

and we also have 0 < x — 3 < 1 and so ﬁ > 1. It follows that
L >0.
Now pick x such that 2 < z <3 and 0 < |z — 3| < J. We get

1
—1<L< 1,
z—3 3:—3+
and w—i?) < —1 and hence

L <0.

This is not possible; so the limit of f(z) as z approaches 3 does not
exist.

The following result gives an important connection between limits
of functions and limits of sequences. This result will allow us to trans-
late statements we have proven about limits of sequences to limits of
functions.

Theorem 18.4. Let f(x) be a function and let a be a real number. Let
r > 0 be a positive real number such that [ is defined at every point of
{r eR|0< |z —a| <r}. Let L be any real number.
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lim,_,, f(z) = L if and only if for every sequence {x,}>2 | that con-
verges to a and satisfies 0 < |z, —a| < r for all n, we have that the
sequence { f(x,)}52, converges to L.

Loosely, the condition that there is an r > 0 such that f is defined
at every point of {x € R | 0 < |r —a| < r} says that “f is defined near,
but not necessarily at, a”.

Proof. Let f be a function, a € R, and r > 0 a positive real number
such that f is defined on {x e R| 0 < |z —a| < r}.

(=) Assume lim,_,, f(z) = L. Let {z,}°°, be any sequence that
converges to a and is such that 0 < |z,, — a| < r for all n. We need to
prove that the sequence {f(z,)}5°, converges to L.

Pick € > 0. By definition of the limit of a function, there is a 6 > 0
such that if 0 < |z — a| < d, then f is defined at x and |f(z) — L| < e.
Since 6 > 0 and {z,}52, converges to a, by the definition of conver-
gence, there is an N such that if n € N and n > N then |z, —a| < §.
I claim that this N “works” to prove {f(x,)}>2, converges to L too:
If n € Nand n > N, then |z, — a|] < ¢ and, since x,, # a for all n, we
have 0 < |z,, —a| < 0. It follows that |f(x,) — L| < e. This shows that
{f(zn)}5°, converges to L.

(<) We prove the contrapositive. That is, assume lim,_,, f(z) is not
L (including the case where the limit does not exist). We need to prove
that there is at least one sequence {z,}°; such that (a) it converges
to a, (b) 0 < |z, —a| < r for all n and yet (c) the sequence {f(z,)}2,
does not converge to L.

The fact that lim,_,, f(z) is not L means:

There is an € > 0 such that for every 6 > 0 there exists
an o € R such that 0 < |z — a| < §, but either f is not
defined at x or |f(z) — L| > e.

For this ¢, for any natural number n, set 6, = min{<,r}. We get that
there is a x,, € R such that 0 < |z, — a| < J,, and |f(x,) — L| > €.
(Note that f is necessarily defined at x,, since 0, < r.) I claim that
the sequence {z,}5°, satisfies the needed three conditions. (a) Since
O < %, we have a — % <z, < a-+ 711 for all n, and hence by the
Squeeze Lemma, the sequence {z,}5°, converges to a. (b) This holds
by construction, since 6, < r. (c) Since, for the positive number ¢
above, we have |f(z,) — L| > ¢ for all n, the sequence { f(z,)}32, does
not converge to L. O

Corollary 18.5. Let f be a function and a and L be real numbers.
Suppose that the domain of f is all of R orR~{a}. Thenlim,,, f(z) =

L if and only if for every sequence {x,}°2, that converges to a such
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that x,, # a for all n, we have that the sequence {f(x,)}5°, converges
to L.

Proof. (=) Assume lim,_,, f(z) = L, and let {x,}>°, be a sequence
that converges to a such that z, # a for all n. Since {z,}°, is
convergent, it is bounded, so there is some M > 0 such that |z,| < M
for all n. Then |z, —a] < M + |a| by the Triangle Inequality. Thus,
0 < |z, —a| < M + |a| for all n, so we can apply Theorem [18.4] (with
“r’= M +|al), so {f(z,)}52, converges to L.

(«<=) The point is that if the “right hand side” condition holds in
this statement, then for any r» > 0, the “right hand side” condition of
Theorem holds. Thus, by Theorem [18.4] lim,_,, f(z) = L. O

19. NOVEMBER 3, 2022

Theorem 19.1 (Algebra and limits of functions). Suppose f and g are
two functions and that a is a real number, and assume that
lim f(x) = L and lim g(z) = M
r—a T—a
for some real numbers L and M. Then
(1) lim,.(f(x) +g(x)) =L+ M.
(2) For any real number ¢, lim,_,(c- f(x)) =c- L.
(3) lim,_,(f(x)-g(x))=L-M.
(4) If, in addition, we have that M # 0, then lim,_,.(f(z)/g(z)) =
L/M.

Theorem 19.2 (Squeeze Theorem for limits). Suppose f, g, and h are
three functions and a is a real number. Suppose there is a positive real
number r > 0 such that

e cach of f,g,h is defined on {x € R |0 < |z —a| <1},

o f(x) <g(x) < h(zx) for all z such that 0 < |z —a| <1, and

e lim, ,, f(z) = L = lim,,, h(z) for some number L.
Then lim,_,, g(x) = L.

(1) Use the e — ¢ definition to show that lim,_,o |z| = 0.

Let ¢ > 0. Take § = . Pick x such that 0 < |z] < 4.
Then |z| is defined, and ||z| — 0| = |z| < e. Thus,
lim, o |z| = 0.

(2) Let



56

Use the € — § definition to show that lim,_,, f(x) does not exist
for any real number a € R.

Fix a € R and suppose lim,_,, f(x) = L for some L. Take
e = 3. Then there is some § such that if 0 < |z —a| <0
then | f(z) — L| < 3. By density of rationals, there is a ra-
tional number ¢ with a < ¢ <a+ 4, so f(g) = 1 and hence
|1 — L| < i. By density of irrationals, there is a ratio-
nal number z with a < z < a+4, so f(z) = 0 and hence
0—L| <3 Butthen 1 =[1 -0 < [0—-L|+ |1 - L] <

% + % = 1, a contradiction. Thus no such L exists.

(3) Use Corollary 18.5 to show that 31613% sin <£) does not exist.
Suggestion: Let f(x) = sin(%) and suppose lim,_,o f(z) = L.
Find sequences {x,},—1 and {y,},=1 such that

e {z,},=1 and {y,}n=1 both converge to 0,
o f(x,) =1 for all n, and
e f(y,) = —1 for all n.

Suppose lim, o f(z) = L. Let {z,}5°, = {ﬁ}?:r
This sequence converges to 0 and f(x,) = 1 for all n, so
{f(xn)}22, converges to 1. Thus, L = 1. Now let {y,, }°, =

{ii%n .. This sequence converges to 0 and f(y,) = —1
2

for all n, so {f(yn)}o>, converges to —1. Thus, L = —1.
This is a contradiction, so no such L exists.

T S )
(4) Use Theorem 19.1 plus a homework problem to compute hr% —T3
T—r €T

We have lim,_,» x = 2 and the limit of a constant is the
value of that constant. Thus lim, o2z +3 = 2+ 3 = 5,
and lim,_p 2% = (lim, 2 2)* = 4, so lim, ;232> — 2 + 2 =

3x? — 2
3-4—2+2:12,andhencelim—x T = 5.
z—2 x+3

1
(5) Use Theorem 19.2 to show that lir%xsin (—) = 0. You can
xT— T

use any trig facts on the bottom of the page.
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We have —1 < sin (%) <1, so —|z| < xsin (%) < |zl
We know that lim, ¢ |z| = 0 and hence lim, o —|z| = 0
by the Theorem on algebra of limits of functions. Then by

1
the Squeeze theorem for functions, lim z sin (—) =0.
x—0 x

(6) Use Theorem 18.4 to deduce Theorem 19.2 from our Squeeze
Theorem for sequences.

Proof. Let f,g,h,a,r, L be as in the statement. Let {x,}32,
be a sequence that converges to a and such that 0 <
|z, —a] < r for all n. By Theorem [18.4] it suffices
to show that lim, ,o g(x,) = L. By Theorem we

know that lim, . f(z,) = L = lim, o h(z,). Since
f(z) < g(x,) < h(x,) for all n, we have lim,, ,, g(x,) = L
by the Squeeze Theorem (for sequences). O

(7) Use Theorem 18.4 to deduce Theorem 19.1 part (1) from our
Theorem 10.2 on algebra and sequences.

Proof. First, as a technical matter, we note that since we
assume lim,_,, f(z) = L there is a positive real number
such that f(x) is defined for all z satisfying 0 < |z —a| < 7,
and likewise since lim,_,, g(z) = M there is a positive real
number 75 such that g(z) is defined for all z satisfying 0 <
|z — a| < ry. Letting 7 = min{ry, 72}, we have that r > 0
and f(z) and g(x) and hence f(x)+ g(z) are defined for all
x satisfying 0 < |z — a| < r. (We needed to prove this in
order to apply Theorem M)

Let {z,}22, be any sequence converging to a such that
0 < |z, —a| <r for all n. By Theorem in the “for-
ward direction”, we have that lim, . f(z,) = L and
lim,, 00 g(x,) = M. By Theorem m,
limy, oo f(2,) + g(x,) = L+ M. So, by Theorem[18.4]again
(this time applying it to f(x) + g(z) and using the “back-
ward implication”), it follows that lim, ,.(f(z) + g(z)) =
L+ M. U

(8) Use Theorem 18.4 to deduce Theorem 19.1 part (4) from our
Theorem 10.2 on algebra and sequences.
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Proof. Since we assume lim,_,, f(z) = L there is a positive
real number r; such that f(z) is defined for all x satisfying
0 < |z —a| < ry. Since lim,_,, g(x) = M there is a positive
real number ry such that g(z) is defined for all = satisfying
0 < |r—a|l < ry Since M # 0, |[M| > 0, and applying
definition of limit, there is some o > 0 such that if 0 <
|z —al < 9§, then |g(x) — M| < |M]|, and hence by the
reverse triangle inequality, |g(z)| > ||M| — |g(z) — M|| > 0,
so g(x) # 0.

Letting = min{ry,r9, 0}, we have that » > 0 and f(z),
g(x), 1/g(x), and hence f(z)/g(x) are defined for all x sat-
isfying 0 < |z —a| <.

Let {z,}?2, be any sequence converging to a such that
0 < |z, —a|l <r for all n. By Theorem in the “for-
ward direction”, we have that lim, . f(z,) = L and
lim,, o g(x,) = M. Since M # 0 and g(x,) # 0 for all
n € N, by Theorem [10.2]
limy, o0 f(x,)/g(x,) = L/M. So, by Theorem again, it
follows that lim, . (f(z)/g(x)) = L/M. O

20. NOVEMBER 8, 2022

We come to the formal definition of continuity. We first define what
it means for a function to be continuous at a single point, but ultimately
we will be interested in functions that are continuous on entire intervals.

Definition 20.1. Suppose f is a function and a is a real number. We
say f is continuous at a provided the following condition is met:

For every € > 0 there is a § > 0 such that if z is a real
number such that |z —a| < 0 then f is defined at  and

[f(z) = fla)] <e.

Remark 20.2. If f is continuous at a, then by applying the definition
using any positive number € > 0 you like (e.g., e = 1) we get that there
exists a ¢ > 0 such that f is defined for all x such that a—0 < z < a+9.
That is, in order for f to be continuous at a it is necessary (but not
sufficient) that f is defined at all points near a including at a itself. In
particular, unlike in the definition of “limit”, f must be defined at a in
order for it to possibly be continuous at a.

Example 20.3. I claim f(x) = 3z is continuous at a for every value
of a. Pick e > 0. Let 0 = . If [z —a| < § then f is defined at x (since
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the domain of f is all of R) and
|f(z) — f(a)] = |3z — 3a|] = 3|z —a| <3) =e¢.
Example 20.4. The function f(z) with domain R defined by

20 —7 i x>3and
f(x)_{—x if £ <3

is not continuous at 3. Since the domain of f is all of R, the negation
of the definition of “continuous at 3” is:
there is an € > 0 such that for every > 0 there is a real
number z such that |z — 3| < d and |f(z) — f(3)] > .

Set ¢ = 1. For any § > 0, we may choose a real number x so that
3—0<x<3and 2.9 < x < 3. For such an x, we have

f(z) = fOB)|=|—-2z+1=2—-1>19>c¢
The proves f is not continuous at 3.

The definition of continuous looks a lot like the definition of limit,
with L replaced by f(a). This is not just superficial:

Theorem 20.5. Suppose [ is a function and a is a real number and
assume that f is defined at a. f is continuous at a if and only if

lim, ,, f(x) = f(a).

Proof. (=) This is immediate from the definitions.
(«<=) This is almost immediate from the definitions: Suppose lim,_,, f(x) =

f(a). Pick e > 0. Then there is a § such that if 0 < |z —a| < J, then f
is defined at x and |f(z) — f(a)| < e. This nearly gives that f is contin-
uous at a by definition, except that we need to know that if |z —a| < 6,
then f is defined at x and |f(z) — f(a)| < e. The only “extra” case is
the case x = a. But if x = a, then f is defined at a by assumption and
we have |f(z) — f(a)| =0 <e. O

Remark 20.6. Remember, when we write lim,_,, f(z) = f(a) we mean
that the limit exists and is equal to the number f(a). So, by this
Lemma, if lim,_,, f(x) does not exist, then f is not continuous at a.

Example 20.7. Define a function f whose domain is all of R by
1 ifxeQand
fz) = .
0 ifxé¢Q.

As we proved, lim, ., f(x) does not exist for any a. So, this function
is continuous nowhere.
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Example 20.8. The function f(z) =/ is continuous at a for every
a > 0. This holds since for any a > 0, as you proved on the homework
we have

lim vz = V/a.

r—a

Theorem 20.9. Let a € R and suppose [ and g are two functions that
are both continuous at a. Then so are

(1) f(z) +g(),

(2) c- f(x), for any constant c,
(3) f(x) - g(x), and

(4) % provided g(a) # 0.

Proof. Follows from Theorems and [19.1] O

Example 20.10. Polynomials are continuous everywhere. The func-
tion x is continuous everywhere (since lim,,, * = a). By part (3)
above and a simple induction, 2" is continuous everywhere for every n.
Then by parts (1) and (2), it follows that every polynomial is continu-
ous everywhere.

Recall that for functions f and g, f o g is the composition: it is the
function that sends x to f(g(x)). The domain of f o g is

{z € R| z is the domain of g and g(z) is in the domain of f}.

Theorem 20.11. Suppose g is continuous at a point a and [ is con-
tinuous at g(a). Then f o g is continuous at a.

Proof. Let a € R be such that that g is continuous at a and f is
continuous at g(a). I prove fog is continuous at a using the definition.

Pick € > 0. Since f is continuous at g(a), there is a v > 0 such that
if |y — g(a)| < then f is defined at y and |f(y) — f(g(a))| <e. (I am
using y in place of the usual x for clarity below, and I am calling this
number v, and not d, since it is not the § I am seeking.) Since 7 > 0
and ¢ is continuous at a, there is a 6 > 0 such that if |z — a| < § then
g is defined at x and |g(z) — a| < 7.

This 6 “works” to prove f o g is continuous at a: Let x be any
real number such that |z — a| < 6. Then g is defined at = and
lg(z) — g(a)| <. Taking y = g(x) above, this gives that f is defined
at g(z) and |f(g(z)) — f(g(a))] < e. This proves f o g is continuous
at a. U
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21. NOVEMBER 10, 2022
(1) Let

fx) =

Use the € — § definition to show that f(x) is continuous at 1.

2x ifx>1
r+1 ifx<1’

Let € > 0. Take 0 = ¢/2. Then if |z — 1| < § = /2,
we either have f(z) = 2z, so |f(z) — f(1)| = |2z — 2| =
2z — 1| < 2/2 =¢, or f(x) =x+1,s0 |f(z) — f(1)] =
lt+1-2|=r—1]<eg/2<e.

(2) Let
r fzeQ
9(x) = {0 itr¢Q
Show that g(z) is continuous at 0 and is not continuous at any

other real number. You can use any theorems you like and
anything relevant from the homework.

From the homework, lim,,of(z) = 0 , and since
f(0) = 0, f is continuous at 0. Also from the homework,

lim,_,, f(x) does not exist for a # 0, so f is not continuous
at a if a # 0.

(3) Let h(x) = v/2? + 5. Show that h is continuous at a for every
a € R.

We can write h = fog with f(x) = y/z and g(z) = 22 +5.
For any a € R, g is continuous at a, and g(a) > 0. Then
since g(a) > 0, f is continuous at g(a). Thus, f o g is
continuous at a.

It is tiresome to say “continuous at a for every a € R”. The following
definition is then convenient.

Definition 21.1. Let S be an open interval of R of the form S =
(a,b), S = (a,0), S = (—00,a), or S = (—o0,00) = R. We say f is
continuous on S if f is continuous at a for all a € S.

(4) Which of the following functions are continuous on R?
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o f(x)=+ax%+5. o ;(x): :

e Every polynomial func- (x) = =
tion.

S

8

Just f(z) = V2?2 + 5 and Every polynomial function.

(5) Which of the following functions are continuous on (0, 00)?

o f(z) = ViTHB, . /(&) = V&

e Every polynomial func- o f(z)=1.
tion.
All of them.

xsin(l/x)ifx # 0
Oifx =0
(You can use without proof that sin(x) is continuous on R).

(6) Prove that j(z) = is continuous on R.

We saw earlier that lim,_,oj(xz) = 0 = j(0), so j is con-
tinuous at 0. For a # 0, the function 1/x is continuous at
a, and sin(z) is continuous at 1/a, so sin(1/x) is continuous
at a. The function z is also continuousat a, so zsin(1/z) is
continuous at a.

(7) Prove or disprove: If f and g are two functions, a € R, and
f(a) = g(a) , then f is continuous at a if and only if g is
continuous at a.

To disprove it, consider f(z) = 0 and g(x) =

Oifx =0
lifx#£0

(8) Prove or disprove: If f and g are two functions, a < b, and
f(z) = g(z) for all x € (a,b), then f is continuous on (a,b) if
and only if ¢ is continuous on (a, b).

To prove it, let f be continuous on (a,b), ¢ € (a,b), and
€ > 0. By definition of continuous at ¢, there is some 9; > 0
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such that if |z — ¢| < § then |f(z) — f(c)] < e. Let 0 =
min{d;, c—a,b—c}. Since ¢§ is the minimum of three positive
numbers, § > 0. Then, if |z — ¢| <, since |z — ¢| < ¢ — a,
we must have ¢ > a; since | — ¢| < b — ¢, we must have
¢ < b. Thus z € (a,b), so g(xz) = f(x). Since |z — ¢| < 01,
£() — £(e)] < e. Then lg(x) — g(0)] = |f(z) — £(c)] < =.
This shows that ¢ is continuous at ¢. Since ¢ € (a,b) was
arbitrary, g is continuous on (a, b).

The other implication follows by switching the roles of f
and g.

22. NOVEMBER 22, 2022

Definition 22.1. Given a function f(x) and real numbers a < b, we
say f is continuous on the closed interval [a,b] provided

(1) for every r € (a,b), f is continuous at 7 in the sense defined
already,

(2) for every € > 0 there is a 0 > 0 such that a <z < a+ 4, then
f(z) is defined and |f(x) — f(a)| < e.

(3) for every ¢ > 0 there is a § > 0 such that if b— 6 < z < b, then
f(z) is defined and |f(z) — f(b)| < e.

(1) Explain why if f is continuous at z for every x € [a,b], then f
is continuous on the closed interval [a,b]. In particular, if f is
continuous on any open interval containing [a, b], then f is con-
tinuous on [a, b]. Conclude that every polynomial is continuous
on every closed interval.

Condition (1) is automatic. If f is continuous at a then
there is a ¢ such that if a —§ < z < a + § then f(zx) is
defined and |f(x) — f(a)| < ¢; in particular, for the same 0,
ifa<z<a+d,thena—0 <z <a+d and hence f(x) is
defined and |f(x) — f(a)| < . Similarly for continuity at b
and condition (3).

(2) Show that the function f(x) = +/1 — 2?2 is continuous on the
closed interval [—1,1]:
e For showing condition (1), I recommend using a Theorem
about compositions of functions.
e For conditions (2) and (3), show that 6 = min{e?/\/4,2}
works.
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Is this function continuous on any open interval containing
[—1,1]7

If x € (—1,1), then write f(z) = (g o h)(z) with h(z) =
1 — 22 and g(x) = /z; for z in this range, h(z) > 0, so
g is continuous at x, and hence f is continuous at z. This
covers condition (1). For condition (2), let ¢ > 0 and take
§ = min{e?/4,2}. If =1 <z < —1 + 4, then since § < 2,
r < —142 =1, so x is in the domain of f. Also, since
§ < e?/4, we have x — (—1) < § < £2/4 and since x > —1,
1—2<2 50

V1—22—/1— (=12 =V1I-22=V1—aV1+a <2/ /d=c¢.

Similarly for condition (3).

Theorem 22.2 (Intermediate Value Theorem). Suppose f is a func-
tion, that a < b are real numbers, and that f is continuous on the
closed interval [a,b]. If y is any number between f(a) and f(b) (i.e.,
fla) <y < f(b) or f(a) >y > f(b)), then there is a ¢ € [a,b] such
that f(c) = y.

(3) Draw a picture of this theorem as follows:

e Mark some a and b on the z-axis.

e Graph a function f that is continuous on [a, b].

e Mark f(a) and f(b) on the y-axis.

e Pick some y in between f(a) and f(b), and make a hori-

zontal line for this y-value.

e Does it intersect the graph of f7
Repeat with at least one graph that is increasing, at least one
graph that is decreasing, and at least one graph that is neither
increasing nor decreasing.

(4) Give a counterexample to the statement of the Intermediate
Value Theorem without the hypothesis that f is continuous on
[a, b].

Take
ﬂ@:{xﬁx<0

z+2ifx>0




65

Then f(—1) < 1 < f(1), but there is no z € [—1,1] with
flx) = 1.

(5) Prove or disprove: There is a real number z € [0, 2] such that
x> —3r =1

Take f(z) = 23 — 3z. It is a polynomial and hence con-
tinuous on [0,2]. Then f(0) =0 <1 < 2= f(2), so there is
some ¢ € [—1,1] with f(c) = 1.

(6) Prove or disprove: There are at least two real numbers x € [0, 2]
such that 2® — 3z = —1.

Take the same f(x) = 23 — 3z. Then f(0) =0 > —1 >
—2 = f(1), so there is some ¢; € [0,1] with f(c¢;) = 1.
Also, Then f(1) = =2 < —1 < 2 = f(2), so there is some
co € [1,2] with f(co) = 1. We know that ¢; # 1 and ¢ # 1
since f(1) # 1, so ¢; # ¢o. Thus there are two values that
output —1.

(7) True or false: If f(z) is continuous on [a,b], and y is not in
between f(a) and f(b), then there is no ¢ € [a,b] such that

flc)=y.

From the previous problem f(z) = 2® — 3z on [0, 2] with
y = —1 is a counterexample.

(8) Proof of the Intermediate Value Theorem:

(a) Let’s assume that f(a) < f(b) to get started. Explain why
the cases y = f(a) and y = f(b) are easy. Hence, we
assume that f(a) <y < f(b).

(b) Let S ={z € [a,b] | f(r) <y for all a <r < x}. In short,
S is the set of x-values in the interval where the graph of
f hasn’t crossed y yet. Explain why S has a supremum,
and let ¢ = sup(95).

(c) Show that ¢ > a. [ Hint: Apply part (2) of definition of
continuous on [a, b] with ¢ = y — f(a), and show that a is
not an upper bound for S']



(d) The argument that ¢ < b is similar (so come back to it
later if you want). Thus, ¢ € (a,b), so we know that f is
continuous at c.

(e) Suppose that f(c) < y, and obtain a contradiction. | Hint:
Apply continuous at ¢ with e = y — f(c¢), and show that ¢
is not an upper bound for S']

(f) Suppose that f(c) > y, and obtain a contradiction. [ Hint:
Apply continuous at ¢ with € = f(c) —y, and find a smaller
upper bound for S|

(g) This concludes the case when f(a) < f(b). If f(a) > f(b),
what can you say about g(x) = —f(z)? Can we apply the
case we just did?

Proof of Intermediate Value Theorem. Assume f is contin-
uous on [a,b] and y is a real number such that f(a) <y <
f(b) or f(b) <y < f(a). We need to prove there is a
¢ € la, b] such that f(c) =y.

Let us assume f(a) < y < f(b) — the other case may
be proved in a very similar manner, or by appealing to this
case using the function —f(z) instead.

If f(a) =y then we may take ¢ = a and if f(b) =y then
we may take ¢ = b. So, we may assume f(a) <y < f(b).

Consider the set

S={zeR|a<z<band f(z) <y for all x € [a, 2]}

This set is nonempty, since a € S, and it is bounded above,
by b. It therefore has a supremum, which we will call ¢. I
claim f(c) = y.

Let us first show that ¢ > a. By way of contradiction,
suppose ¢ < a. Since ¢ > a, we must have ¢ = a. Since f is
continuous on [a, b], taking € = y— f(a) > 0 in the definition,
we get that there is a > 0 such that if a < x < a+ 0, then
fla)—e < f(z) < f(a)+e. In particular, ifa <z < a+6/2,
then f(z) < f(a) +¢& = y. This proves that a +§/2 € S.
But a + /2 > a = ¢, contrary to the fact that ¢ is the
supremum of S. We conclude that ¢ > a.

Similarly, one may show that ¢ < b — I leave this to you
as an exercise.

We now know that a < ¢ < b, and we next prove that
f(c) = y by showing that f(c¢) > y and f(c) < y are each
impossible.
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Suppose f(c) > y. Setting ¢ = f(c¢) —y and applying
the definition of continuous at ¢, there is a § > 0 such
that if z is any number such that ¢ — 0 < x < ¢+ § then
flc) —e < f(z) < f(c) + . In particular, for any z such
that ¢ — 0 < z < ¢, we have

f(z)> fle)—e =y
In particular, z is not in the set S. It follows that ¢ — ¢ is
an upper bound of S, contrary to the fact that c is the least
upper bound of S.

Suppose f(c) < y. Setting ¢ = y — f(c) and applying
the definition of continuous at ¢, there is a 6 > 0 such that
ifc—d <x<c+9d, then f(c) —e < f(z) < f(c) + €. In
particular, if x is any real number such that ¢ < z < ¢+4§/2,
then f(z) < f(c) + e =y. Moreover, if x < ¢, then z is not
an upper bound of S, and hence there is a z € S such that
x < z. If follows that f(z) <y. So, we have shown that if
x < c+6§/2, then f(x) <y. This shows that ¢+ 6/2 € S,
contrary to ¢ being an upper bound of S. O

23. NOVEMBER 29, 2022

Theorem 23.1 (Boundedness Theorem). Suppose f is continuous on
the closed interval [a,b] for some real numbers a,b with a <b. Then f
is bounded on [a,b] — that is, there are real numbers m and M so that
m < f(z) < M for all x € |a,b].

Theorem 23.2 (Extreme Value Theorem). Assume f is continuous on
the closed interval [a, b] for some real numbers a and b with a < b. Then
[ attains a minimum and a mazimum value on [a,b] — that is, there
exists a number r € [a,b] such that f(x) < f(r) for all x € [a,b] and
there exists a number s € [a,b] such that f(x) > f(s) for all x € [a,b].

(1) Explain why the Extreme Value Theorem actually implies the
Boundedness Theorem. (The reason we state both is that we
have to prove the Boundedness Theorem on the way to the
Extreme Value Theorem.)

Take M = f(r) and m = f(s).
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(2) In this problem we explore the necessity of the hypotheses in
these theorems.

(a) Draw a graph of a function on a closed interval [a, b] that
is not continuous, but is not bounded on [a, b].

(b) Draw a graph of a function that is continuous on an open
interval (a,b), but is not bounded on (a,b).

(c) Draw a graph of a function that is continuous on an open
interval (a,b), and is bounded on (a,b), but for which the
conclusion of the Extreme Value Theorem fails.

Can you find formulas of functions that match each story?

1/zifx#0
Oifz=0
(b) For example, take f(z) = 1/z on (0,1).
(c) For example, take f(x) =z on (0,1).

(a) For example, take f(z) = on [—1,1].

Lemma from homework: Let a < b be real numbers and [a,b] be
a closed interval. Let {z,},—1 be a sequence with z,, € [a,b] for all n,
and assume that {x,},—1 converges to r. Then,

e 1 € [a,b], and
e If f is continuous on the closed interval [a, b], then the sequence
{f(zn)}5, converges to f(r).

(3) Proof of Boundedness Theorem:

(a) We argue by contradiction. What does it mean to suppose
that the theorem is false? Your answer should involve an
“or”. Assume one of the two cases.

(b) Explain why there must be a sequence {x,}°°, with z,, €
[a,b] and f(z,) > n for all n € N (unless you chose the
other case. .. ).

(c¢) Apply Bolzano-Weierstrass to the sequence {z, }°°,. What
do you get?

(d) Now apply the Lemma from the homework. What do you
get?

(a) If the Theorem is false, there is a function f that is
continuous on the closed interval [a,b] but the set of
values of f on [a,b] is either unbounded above or un-
bounded below. Assume we have such a function that
is unbounded above.
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(b) By assumption, for every n € N, n is not an upper
bound for the values of f on [a,b]. Thus, for every
n € N, there is some x,, with f(x,) > n. This gives us
a sequence {z,}°°, with z,, € [a,b] and f(z,) > n for
alln e N

(c¢) The sequence {z,}5°, has a convergent subsequence
{xnk }20:1

(d) Since z,, € [a,b] for all k, by the lemma we have
first that {x,, }32, converges to r € [a,b], and sec-
ond, that {f(z,, )}, converges to f(r). But since
f(zn,) > nk > k, the sequence {f(z,,)}, diverges
(to +o0 in fact). This is a contradiction, so we conclude
that the set of values of f is bounded above. A similar
argument (or the same case applied to —f) shows that
the set of values of f is also bounded below.

(4) Proof of Extreme Value Theorem:

We will find a maximum value; finding a minimum value
is similar (or follows from this part applied to —f).

(a) Let R = {f(z) | = € [a,b]}. Explain why R has a supre-
mum; call it /.

(b) Explain why there must be a sequence {x,}°°, with z,, €
[a,b] and £ — L < f(x,) < ¢ for all n € N.

(c) Apply Bolzano-Weierstrass to the sequence {z,,}°°,. What
do you get?

(d) Now apply the Lemma from the homework. What do you
get?

We will find a maximum value; finding a minimum
value is similar (or follows from this part applied to
—f).

(a) Let R = {f(z) | * € [a,b]}. R is nonempty since
f(a) € R, and it is bounded above by the Boundedness
Theorem. Thus R has a supremum, which we will call
L.

(b) For any n, ¢ — % < sup(R), so it is not an upper bound
for R. This means that there is some y, € R with
l— % < Yp; since £ is an upper bound for R we also

have ¢ — % < yp < L. By definition of R, there is some
x, € la,b] with f(z,) = y,. Thus, we have a sequence
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{zn}o2, with @, € [a,b] and € — L < f(x,) < { for all
n € N.

(c) The sequence {z,}5°, has a convergent subsequence
{xnk }20:1

(d) Since z,, € [a,b] for all k, by the lemma we have
first that {z,, }32, converges to r € [a,b], and second,
that {f(zn,)}%2, converges to f(r). Since ¢ — i <
f(zn,) < ¢, the sequence {f(z,, )}, converges to ¢
by the Squeeze Theorem. Thus, f(r) = ¢. Then, by
definition of supremum, we have that f(z) < f(r) for
all z € [a,b].

24. DECEMBER 1, 2022

Definition: Let f be a function and r be a real number. We say that
f is differentiable at r if f is defined at r and the limit

o 1@) = 1)

exists. In this case, we call the limit the derivative of f at r and write
f'(r) for this limit.

(1) Use the definition to show that the derivative of f(z) =z is 1
for any r.

Let f(z) = x and consider

i L&) S0
T—r r—7T T=r L — T T

(2) Use the definition to show that the function f(x) = |z| is not
differentiable at = = 0.

Consider
tim A0 = SO ol JE e >0
150 r—0 =0 =0 | =1 ifz<0

Letting z,, = 1/n, we have that the sequence x,, — 0 and
f(x,) — 1; letting v, = —1/n, we have that the sequence
yn — 0 and f(y,) — —1, so the limit does not exist.
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(3) Prove that if f is differentiable at = = r, then f is continuous
at z =r.

Suppose that f is differentiable at r so

) = iy T 10)
Then
tim (e — ) T o)) =0

lim F(z) — £(r) = Tim ( — )=S0

T T T —7r
and hence
lim f(2) = f(r).

Thus f is continuous at 7.

(4) Prove or disprove the converse of the previous statement.

We have already seen that f(z) = |z| at r = 0 is a coun-
terexample.

Theorem (Derivatives and algebra: Let f, g be functions that are
differentiable at x = r, and ¢ be a real number. Then,
(1) f+ g is differentiable at x = r and (f + g)'(r) = f'(r) + ¢'(r);
(2) cf is differentiable at x = r and (cf)'(r) = c¢f'(r);
(3) fgisdifferentiable at x = rand (fg)'(r) = f'(r)g(r)+f(r)g'(r).

(6) Prove that if f(z) = 2™, then f is differentiable at any value of
x and f'(x) = nz™ ! for every n € N.

We proceed by induction on n. For the base case, we use
the definition to show that the derivative of z is 1 (skipped
here). Suppose that (z%)" = kz*~1. Then (zF) = z(2*) +
2'(2%) = wka*1 + 2% = (k+ 1)a*. This shows the claim for
all n € N by induction.

(7) Use the Theorem plus the previous problem to compute the
derivative of f(x) = 5z" — v/19x%.
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3525 — 4+/1923.

(8) Prove the Theorem.

For part (1), we note that

(S +9)) = (F+9)r) _ f@)+g(x) = flr) —g(r) _ flz) = J(r) | g(=) — g(r)
r—r T —r T —r xr—r
When we take the limit as = approaches r, this is f/(r) +
g'(r), using the definition of f’(r) and ¢'(r) and the fact
that the limit of a sum of two functions is the sum of the
limits (when they both exist).
For (2), we note that
(cf)(@) = (ef)lr) _ flz) = f(r)
r—r r—r
and it follows from our limit theorems that the limit as x
approaches r is cf'(r).
For (3), using what we know about limits we get
i £ ®)9(@) = f(r)g(r) _ . (f(l')g(l’) — f(r)g(x) | fr)g(z) — f(?“)g(’f’))
z—T T —r T—T T —r T —
= lim g(z) - lim (—f(x) - f(r)) + f(r) - lim (—g(a:) — g(r))
=T =T xr—7T =T xr—7rTr
=g(r)f'(r) + f(r)g'(r),

where for the last step we use that lim, ., g(x) = g(r) since
g is continuous at r (since differentiable implies continuous).

DERIVATIVES AND OPTIMIZATION

Theorem: Let f be a function that is differentiable at z = r.

(1) If f'(r) > 0, then there is some § > 0 such that
o if z € (r,r+9) then f(r) < f(x);
o if x € (r—0,r) then f(x) < f(r).

(2) If f'(r) <0, then there is some § > 0 such that
o if x € (r,r +9) then f(r) > f(x);
o if x € (r —0,r) then f(x) > f(r).
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Corollary (Derivatives and optimization): Let f be a function
that is continuous on a closed interval [a, b]. If f attains a maximum
or minimum value on [a,b] at r € (a,b), and f is differentiable at

r, then f'(r) = 0.

(1) Find the values of z on [0,2] at which f(z) = 2® — 2x achieves
its minimum and maximum values.

Since f is differentiable on (0, 2), they must be where the
derivative is zero or at the endpoints. f’(z) = 0 means
322 = 6 s0o £ = +/2. The minimum is at z = v/2 and the
max is at x = 2.

(2) Explain why the Corollary follows from the Theorem.

Suppose f attains a max on [a,b] at r € (a,b) and f is
differentiable at r, but f’'(r) # 0. If f'(r) > 0, then the first
bullet of part (1) gives an x that yields a contradiction; if
f'(r) <0, then the second bullet bullet of part (2) gives an
x that yields a contradiction. If f attains a min, similarly
with the other bullet points.

25. DECEMBER 6, 2022

Last time we considered the following theorem about derivatives and
nearby values:

Theorem 25.1. Let f be a function that is differentiable at x = r.

(1) If f'(r) > 0, then there is some § > 0 such that
o ifx € (r,r+0) then f(r) < f(x);
o ifx € (r—4,r) then f(x) < f(r).

(2) If f'(r) < 0, then there is some § > 0 such that
o ifx € (r,r+0) then f(r) > f(x);
o ifwc (r—4,r) then f(x) > f(r).

Proof. We start with part (1). Take h(x) = w Let
e = f'(r) = lim h(z).
Tr—r

Then there is some § > 0 such that |h(z) — f'(r)] > ¢ when x €
(r—38,r)U (r,r +9). But |h(z) — f'(r)] < f'(r) implies h(z) > 0. If
h(z) > 0 and x > r then z —r > 0so f(z) — f(r) = h(z)(x —r) > 0.
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Thus, if € (r,r +6), then f(x) > f(r). If 2 < r, then z —r < 0 so
flz)—=f(r) = h(z)(x—r) < 0. Thus, if z € (r—4,r), then f(x) < f(r).
Part (2) is similar. O

We now want to use derivatives to study when a function is increasing
or decreasing.

Definition 25.2. Let f be a function, and I C R be an interval con-
tained in domain of f. We say that

e f is increasing on [ if for any a,b € I with a < b we have
fla) < f(b);

e f is decreasing on I if for any a,b € I with a < b we have
fla) = f(b);

e f is constant on [ if for any a,b € I with a < b we have
fla) = f(b);

o f is strictly increasing on I if for any a,b € I with a < b we
have f(a) < f(b);

e f is strictly decreasing on I if for any a,b € I with a < b we

have f(a) > f(b).

We may be tempted by the previous theorem to say that if the de-
rivative of f is positive then f is increasing. Before we get ahead of
ourselves, let’s consider a strange example.

2 T
Example 25.3. Consider the function f(z) = " +r ifreQ

x ifz ¢ Q
Note that we can write f(z) = fi(z) + fo(x) where fi(z) = z and
22 ifzeQ . .
fa(x) = . . We have shown that f; is differentiable at any
0 ifzgQ

z € Rand f{(z) =1, and f, is differentiable at z = 0 with f5(0) = 0.
Thus f is differentiable at 0 and f/(0) = 1. However, f is not increasing
on any interval containing 0. To see it, let a < 0 < bso 0 € (a,b). Using
density of rational numbers pick a rational number ¢ with 0 < ¢ < 9.
Then ¢*> > 0 so ¢°> + ¢ > ¢. By density of irrational numbers, there is
some irrational number z with ¢ < z < min{¢* + ¢,b}. Then ¢ < 2
(and both are in (a,b)) but f(q) = ¢*+ ¢ > 2z = f(z), so f is not
increasing on (a, b).

However, not all is hopeless. The important ingredient we need is
the following.

Theorem 25.4 (Mean Value Theorem). Assume f is continuous on
the closed interval [a,b] and differentiable at every point of (a,b). Then



75

there exists a ¢ € (a,b) such that
F(B) ~ f(a)

fe) ==

Proof. First we deal with the special case in which f(a) = f(b).

If f is constant on [a, b], then the derivative of f is zero at every point.
By the Extreme Value Theorem, f attains a minimum and a maximum
on [a,b]; say m and M, respectively. We have m < f(a) = f(b) < M.
If m and M are both equal to f(a) and f(b), then f is constant on [a, b],
and we're done. Otherwise, either the minimum or maximum occurs
at some ¢ other than a and b, so in ¢ € (a,b). Then the Corollary on
Derivatives and Optimization says that f’(c) = 0.

Now, we no longer assume that f(a) = f(b). Let {(z) = {&=10) 5

Then for g(z) = f(z) — ¢(x), we have o
o(6)~g(a) = 1)~ f(a)~(¢0) (@) = )~ F(a)- (LD

Since ¢ is continuous on [a, b] and differentiable on (a,b), so is g, and
the previous case implies that there exists a ¢ € (a,b) with ¢'(c¢) = 0.

But
0=g(0) = £1(0) = 1) = f'te) - LU =S

so f'(c) = f(bl);a(a) as required. O

)(b—a) = 0.

Corollary 25.5. Suppose I is an open interval (that is, I = (a,b),
(a,0), (—00,b), or (00, 00)) and f is differentiable on all of I.

(1) f'(x) >0 for all x € I if and only if f is increasing on I.

(2) f'(x) <0 for all x € I if and only if f is decreasing on I.

(3) f'(x) =0 for all x € I if and only if f is a constant on I.

Proof. We start with (1).

For the (=) direction, assume that f’(x) > 0 for all x € I. To show
that f is increasing, let a,b € I with a < b. Then f is differentiable on
(a,b) since (a,b) C I and f is continuous on [a.b] since f is continuous
on I and [a.b] C I. Thus, by the Mean Value Theorem, there is some

c € (a,b) with 0 < f'(c) = %a(a) Since a < b, b — a > 0 so we must
have f(b) — f(a) > 0, so f(a) < f(b), as required.

For the (<) direction, we argue the contrapositive. Assume that
f'(r) <0 for all some r € I. By Theorem ?, there is some § > 0 such
that f(z) < f(r) for all x € (z,z + J), so there is some = € I with
r < x and f(x) > f(r). This implies that f is not increasing on /.

For (2), we can argue similarly or apply (1) to —f(z).
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For (3), we can argue similarly or observe that f is constant if and
only if it is both increasing and decreasing on I, and that f’(x) =0 on
I if and only if f'(z) > 0 and f'(z) <0 for all z € I. O

Discussion Questions.

(1) Using a Theorem, prove that f(z) = z* is increasing on R.

(2) Using the definition and not theorems, prove that f(z) = 2? is
strictly increasing on R.

(3) Prove or disprove: If f'(r) = 0, then there is some a,b € R with
a < r < bsuch that f attains its maximum value on [a,b] at
x=r.

(4) Prove or disprove: Let f be differentiable on R. If f is strictly
increasing on R, then f/(x) > 0 for all x € R.

(5) Prove or disprove: Let f be differentiable on R. If f’(z) > 0 for

all x € R, then f is strictly increasing on R.

(1) We have f'(x) = 32? > 0 for all z € R, so by the Corollary
above, f is increasing on R.

(2) Let a < b. Then f(b)— f(a) = b*—a® = (b—a)(a®*+ab+b?).
Then a? + b*> > 0 unless a = b = 0 which is impossible, and
ab > 0 unless a < 0 and b > 0, in which case the claim is
clear, and if a? + 0> > 0 and ab > 0, then a® + ab+ b* > 0
and b—a >0 implies f(b) — f(a) > 0, as required.

(3) False: Take f(z) =2 on [—1,1].

(4) False: Take f(x) = 2® and = = 0.

(5) True: Let f'(z) > 0 for all x € R. Last a < b be real
numbers. Then f is differentiable on (a,b) and continuous
on [a, b] so the Mean Value T heorem applies. There is some
¢ € (a,b) with f'(c) = f(b ) Since f'(¢) >0 and b—a >
0, we must have f(b) — f( )>Oso fla) < f(b).
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