
Schreyer Fall 2018

Review of Differentiation and Integration

for Ordinary Differential Equations

In this course you will be expected to be able to differentiate and integrate quickly
and accurately. Many students take this course after having taken their previous course
many years ago, at another institution where certain topics may have been omitted, or just
feel uncomfortable with particular techniques. Because understanding this material is so
important to being successful in this course, we have put together this brief review packet.

In this packet you will find sample questions and a brief discussion of each topic. If you
find the material in this pamphlet is not sufficient for you, it may be necessary for you to
use additional resources, such as a calculus textbook or online materials. Because this is
considered prerequisite material, it is ultimately your responsibility to learn it. The topics
to be covered include Differentiation and Integration.

1 Differentiation

Exercises:

1. Find the derivative of y = x3 sin(x).

2. Find the derivative of y = ln(x)
cos(x)

.

3. Find the derivative of y = ln(sin(e2x)).

Discussion:
It is expected that you know, without looking at a table, the following differentiation rules:

d

dx
[(kx)n] = kn(kx)n−1 (1)

d

dx

[
ekx
]

= kekx (2)

d

dx
[ln(kx)] =

1

x
(3)

d

dx
[sin(kx)] = k cos kx (4)

d

dx
[cos(kx)] = −k sinx (5)

d

dx
[uv] = u′v + uv′ (6)
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d

dx

[
u

v

]
=
u′v − uv′

v2
(7)

d

dx
[u(v(x))] = u′(v)v′(x). (8)

We put in the constant k into (1) - (5) because a very common mistake to make is something

like:
d

dx
e2x =

e2x

2
(when the correct answer is 2e2x). Equation (6) is known as the product

rule, Equation (7) is known as the quotient rule, and Equation (8) is known as the chain
rule. From these, you can derive the derivative of many other functions, such as the tangent:

tan(x) =
sin(x)

cos(x)

d

dx
[tan(x)] =

cos(x) cos(x)− sin(x)(− sin(x))

(cos(x))2

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)

= sec2(x)

where we have used the quotient rule and simplified.
The chain rule is applied when there is a function of a function, i.e. f(g(x)). The idea

is to take the derivative of the outside function first, leaving its argument alone. Then
multiply that by the derivative of the next outermost function, leaving it’s argument alone.
The process is repeated until there is nothing left of which to take the derivative. So for
example, to take the derivative of sin2(5x), we need to first determine the outside function.
If we re-write it as (sin(5x))2 it is quickly determined that the outside function is “something
squared”, where “something” in this case is sin(5x). The derivative of “something squared”
is “2 times that something times the derivative of that something”. Thus we have

d
dx

[
sin2(5x)

]
=

d

dx

[
(sin(5x))2

]
= 2 sin(5x)

d

dx
[sin(5x)]

= 2 sin(5x) cos(5x)
d

dx
[5x]

= 2 sin(5x) cos(5x)5

= 10 sin(5x) cos(5x)

Solution to Exercises:

1. For this problem, we need the product rule, (6), since two functions are being multi-
plied. In this case, u(x) = x3 and v(x) = sin(x). Thus,

d

dx

[
x3 sin(x)

]
= 3x2 sin(x) + x3[cos(x)]

2



= 3x2 sin(x) + x3 cos(x).

2. This is clearly a quotient of functions, so that the quotient rule applies, (7). We have
u(x) = ln(x) and v(x) = cos(x), which implies:

d

dx

[
ln(x)

cos(x)

]
=

1
x

cos(x)− ln(x)[− sin(x)]

(cos(x))2

=
1
x

cos(x) + ln(x) sin(x)

cos2(x)

=
cos(x) + x ln(x) sin(x)

x cos2(x)

3. This is a case of a function of a function of a function of a function, f(g(h(i(x)))).
We apply the chain rule, always working from the outside function in. In this case the
(very) outside function is f() = ln of “something”; the next most outside function is,
g() = sin of “something”, the next most outside function is, h() = e to the “something”,
and the inside most function is i(x) = 2x. Applying the chain rule (8) we have

d

dx

[
ln(sin(e2x))

]
=

1

sin(e2x)

d

dx

[
sin(e2x)

]
=

1

sin(e2x)
cos(e2x)

d

dx

[
e2x
]

=
1

sin(e2x)
cos(e2x)e2x

d

dx
[2x]

=
1

sin(e2x)
cos(e2x)e2x2

=
2e2x cos(e2x)

sin(e2x)

= 2e2x cot(e2x)

2 Integration

Solving differential equations requires integration - there’s just no getting around it. What
follows is a brief review. If you need supplemental material, please see your calculus text.

Exercises:

1. Evaluate
∫
x
√
x2 + 1 dx.

2. Evaluate
∫ sin(x)

cos(x)
dx.
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3. Evaluate
∫
xe3x dx

4. Given
∫
un ln(u) du =

un+1 ln(u)

n+ 1
− un+1

(n+ 1)2
+ C, evaluate

∫
x2 ln(2x) dx.

The discussion section is rather long, and the solution to these exercises are given at the
end of this section.

Discussion:

2.1 Basic Integration Formulas

Not only is it important to be familiar with various integration techniques, but it is also
important that we be quick and efficient when evaluating integrals so that we can concentrate
on the concepts as oppose to the mechanics of integration.

Examples

1. We can evaluate the indefinite integral
∫
e2xdx by doing a u-substitution. However, we

can become more efficient at evaluating integrals of this type by obtaining a general
formula. Let f(x) = eax, where a is equal to a constant. We would like to obtain a
general formula for

∫
eaxdx. We can accomplish this by doing a u-substitution. Let

u = ax, then du = adx⇒ du
a

= dx. Substitution yields

∫
eaxdx = 1

a

∫
eudu = 1

a
eu + C = 1

a
eax + C

Now we have a general formula that we can use again and again without going to the
trouble of doing the u-substitution each time. For example,

(a) y(x) = e2x

∫
e2xdx =

1

2
e2x + C

(b) y(x) = eπx

∫
eπxdx =

1

π
eπx + C

2. Let us follow the procedure in Example 1 to find the general formula for integrals of
the form

∫
cos (ax) dx, where a is equal to a constant. Let u = ax, then du = adx ⇒

du
a

= dx. Substitution yields
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∫
cos(ax) dx = 1

a

∫
cos(u) du = 1

a
sin(u) + C = 1

a
sin(ax) + C.

Here are some examples of using this general formula.

(a) y(x) = cos(4x)

∫
cos(4x) dx =

1

4
sin(4x) + C

(b) y(x) = cos 1
2π
x

∫
cos

(
1

2π
x
)
dx = 2π sin 2πx+ C

Exercises
Follow the examples above to obtain a general formula for the integral given, then use it to
evaluate parts (a) and (b). As above, a is equal to a constant.

1.
∫

sin(ax) dx

(a)
∫

sin(16x) dx

(b)
∫

sin
(

1

2
x
)
dx

2.
∫

ln(ax) dx

(a)
∫

ln(πx) dx

(b)
∫

ln(
1

π
x) dx

3.
∫

tan(ax) dx

(a)
∫

tan(3x) dx

(b)
∫

tan
(

1

3
x
)
dx

4.
∫

sec(ax) dx

(a)
∫

sec(2.78x) dx

(b)
∫

sec(1618x) dx

5.
∫

arctan(ax) dx
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(a)
∫

arctan(πx) dx

(b)
∫

arctan
(
1
π
x
)
dx

2.2 u-substitution

In general, u-substitutions are not as straight forward as the ones in the previous section.
When doing a u-substitution you want to look for the part of the integral whose derivative
is elsewhere in the integral (up to a constant). Formally, if we have an integral of the form

∫
f(g(x))g

′
(x)dx,

we let u = g(x), then du = g
′
(x)dx, substitution yields

∫
f(g(x))g′(x)dx =

∫
f(u)du

Essentially, we have transformed the space in which we are evaluating the integral. We
evaluate the integral in this new space and then substitute u back in to obtain a solution in
the original space. Similar techniques are often employed to solve differential equations.

Examples

1.
∫
x5ex

6
dx

First, let u = x6, then du = 6x5 ⇒ du
6

= x5. Substitution yields

∫
x5ex

6

dx =
1

6

∫
eudu

=
1

6
eu + C

=
1

6
ex

6

+ C.

2.
∫

(x2 + 1)2(2x) dx
First, let u = x2 + 1, then du = 2x dx. Substitution yields

∫
(x2 + 1)2(2x)dx =

∫
u2 du

=
1

3
u3 + C

=
1

3
(x2 + 1)3 + C.
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Exercises
Use u-substitution to evaluate the following indefinite integrals.

1.
∫

sin2(3x) cos(3x) dx

2.
∫ 1
θ2

cos
(
1
θ

)
dθ

3.
∫ sinx

cos2 x
dx

4.
∫
ex(ex + 1)2 dx

5.
∫

tan4 x sec2 x dx

2.3 Integration by Parts

Integration by parts is applicable to a plethora of functions which we may need to integrate.
Formally, if u and v are functions of x and have continuous derivatives, then∫

udv = uv −
∫
vdu

Choosing which part is equal to u may be facilitated by remembering the acronym: LIATE,
which stands for: Logarithm, Inverse trig, Algebraic, Trigonometric, Exponential. This
means that whichever of these expressions appears first in the acronym, that is the expression
you should let u be. So if you want to evaluate

∫
(x2 + 5x − 2)e5x dx, we see we have an

algebraic expression, x2 + 5x− 2, times an exponential function, e5x. By this acronym, since
A appears before E, we set u = x2 + 5x− 2.

Examples

1. Evaluate
∫
xex dx

First, let u = x ⇒ du = dx and let dv = exdx ⇒ v = ex. Using the integration by
parts formula we obtain ∫

xex dx = xex −
∫
exdx

= xex − ex + C.

2. Evaluate
∫

arcsinxdx
First, let u = arcsinx⇒ du = 1√

1−x2dx and let dv = dx⇒ v = x.

∫
arcsinxdx = x arcsinx−

∫ x√
1− x2

dx
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= x arcsinx+
1

2

∫
w−

1
2dw

= x arcsinx+ w
1
2 + C

= x arcsinx+ (1− x2)
1
2 + C

= x arcsinx+
√

1− x2 + C.

Where the second equality comes from doing a u− substitution (w in this case) where
w = 1− x2

3. Sometimes it is necessary to do integration by parts more than once. For example,∫
x2exdx.

First, let u = x2 ⇒ du = 2xdx and let dv = exdx⇒ v = ex. Substitution yields∫
x2exdx = x2ex − 2

∫
xexdx

= x2ex − 2(xex − ex) + C

= x2ex − 2xex − 2ex + C.

where the second equality comes from our previous calculation in Example 1.

4. Here is another example where integration by parts will be used repeatedly to evaluate
an integral. Evaluate y(x) = ex cosx.
First, let u = ex ⇒ du = exdx and let dv = cosx dx⇒ v = sinx. Substitution yields

∫
ex sinx dx = ex sinx−

∫
ex sinxdx.

Using integration by parts again, let u = ex ⇒ du = exdx and let dv = sinx dx⇒ v =
− cosx. Substitution yields

∫
ex cosx dx = ex sinx−

[
−ex cosx+

∫
ex cosx dx

]
= ex sinx+ ex cosx−

∫
ex cosx dx

2
∫
ex cosx dx = ex sinx+ ex cosx∫
ex cosx dx =

1

2
(ex sinx+ ex cosx) + C.

Exercises
Use integration by parts to evaluate the following indefinite integrals.

1.
∫
t ln (t+ 1) dt

2.
∫ (lnx)2

x
dx

3.
∫

arccosx dx
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4.
∫
e2x sinx dx

5.
∫
ex sinx dx

2.4 Integration using Partial Fraction Decomposition

Partial fraction decomposition is applicable to rational functions which we may need to
integrate. A rational function is one which is a ratio of two polynomials:

f(x) =
P (x)

Q(x)
.

We consider two cases: The degree of P (x) < degree of Q(x) and the degree of P (x) ≥
degree of Q(x). If the degree of P (x) ≥ Q(x), then we use long division to write the rational
polynomial as a polynomial plus a rational polynomial where the degree of the numerator is
less than the degree of the denominator.

Long Division
Examples

1.
x3 − x− 3

√
2

x2 − 2
We note that the degree of the numerator, 3, is larger than the degree of the denomi-
nator, 2. Using long division:

(x2 − 2)
√
x3 − x− 3

√
2

Think: since x2 goes into x3 x times, and we have:

x

x2 − 2
√
x3 − x− 3

√
2

−(x3 − 2x)

x− 3
√

2

Since the degree of x− 3
√

2 is less than the degree of x2 − 2 we stop and we have:

x3 − x− 3
√

2

x2 − 2
= x+

x− 3
√

2

x2 − 2

2.
x5 − 3

x3 − x2
We note that the degree of the numerator, 5, is larger than the degree of the denomi-
nator, 3. Using long division:

(x3 − x2)
√
x5 − x3
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Think: x3 goes into x5 x2 times, and we have

x2

x3 − x2
√
x5 − 3
−(x5 − x4)

x4 − 3

Now x3 goes into x4 x times and we continue:

x2 + x+ 1

x3 − x2
√
x5 − 3
−(x5 − x4)

x4 − 3
−(x4 − x3)
x3 − 3
−(x3 − x2)
x2 − 3

and so we have

x5 − 3

x3 − x2
= x2 + x+ 1 +

x2 − 3

x3 − x2
.

We can check our answer by doing a quick polynomial addition where we put everything
under the same denominator:

(x2 + x+ 1)(x3 − x2)
x3 − x2

+
x2 − 3

x3 − x2
=

x5 − 3

x3 − x2
.

Factoring Polynomials
Since integrating polynomials is (hopefully) easy, we now concentrate on integrating ra-
tional functions where the degree of the numerator is strictly less than the degree of the
denominator. We first note that

All polynomials with real coefficients can be factored into linear and irreducible
quadratic factors:

Q(x) = (α1x− β1)n1(α2x− β2)n2 ...(a1x
2 + b1x+ c1)

m1(a2x
2 + b2x+ c2)

m2 ...

An irreducible quadratic factor is one that has imaginary roots, i.e. from the quadratic
formula, b2 − 4ac < 0. So for example

x4 − 5x2 − 5 = (x2 − 1)(x2 + 4) = (x− 1)(x+ 1)(x2 + 4)
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Here the linear factors are (x−1) and (x+ 1) and the irreducible quadratic factor is (x2 + 4)
since the roots of (x2 + 4) are ±2i (complex). Note that (x2 − 1) is not irreducible, because
it has real roots (±1).

Another example:

2x4 + 2x3 + 3x2 = x2(5x2 + 2x+ 3).

Here we have a repeated linear root: x = 0 appears twice (think (x−0)2), and an irreducible
quadratic: for 5x2 + 2x + 3, b2 − 4ac = 52 − 4(5)(3) = −35 < 0, so this quadratic has only
complex roots.

Partial Fraction Decomposition
We use the following examples to guide our selection of how to decompose a rational function
where the degree of the numerator is strictly less than the degree of the denominator. Note
that the denominators have already been factored into linear and irreducible quadratic terms.
Examples

1.
1

(x− 1)(x− 2)(x− 3)
=

A

x− 1
+

B

x− 2
+

C

x− 3

2.
1

(x− 1)3(x− 2)
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
+

D

x− 2

3.
1

x2(x2 + 1)
=
A

x
+
B

x2
+
Cx+D

x2 + 1

4.
1

(x− 1)2(x2 + 1)2
=

A

x− 1
+

B

(x− 1)2
+
Cx+D

x2 + 1
+

Ex+ F

(x2 + 1)2

The goal is to determine the values of the parameters A, B, ... F and then we can integrate
each term using techniques we already know. Note that in each case, the number of unknown
parameters is equal to the degree of the original polynomial in the denominator. In example
1, on the left side, the denominator is a polynomial of degree 3, and there are 3 parameters,
A, B, and C. In example 4, the, the degree of the polynomial in the denominator is 6, and
there are 6 parameters, etc. This is a sanity check, to be sure we have not made a blatant
error in setting up the partial fraction decomposition.

There are two methods that are used to determine the unknown parameters, and we will
do two examples illustrating each method. In some problems, the first method is easiest to
use, and in others the second. Only experience will help you determine which method to
use.

Examples

1. Find the partial fraction decomposition of

1

(x− 1)(x− 2)(x− 3)
.
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We first note that the degree of the numerator (0) is less than the degree of the
denominator (3). The denominator is already factored, and from the discussion above
we know that the form of the partial fraction decomposition is

1

(x− 1)(x− 2)(x− 3)
=

A

x− 1
+

B

x− 2
+

C

x− 3
(9)

First get the denominators of each term the same by multiplying each term on the
right-hand side by special forms of 1:

1

(x− 1)(x− 2)(x− 3)
=

A

x− 1

(x− 2)(x− 3)

(x− 2)(x− 3)
+

B

x− 2

(x− 1)(x− 3)

(x− 1)(x− 3)
+

C

x− 3

(x− 1)(x− 2)

(x− 1)(x− 2)
.(10)

Because the denominators are the same, in order to satisfy the above equation, we now
only need to be sure the numerators are equal. Examining the numerators only we
have

1 = A(x− 2)(x− 3) +B(x− 1)(x− 3) + C(x− 1)(x− 2). (11)

The above equation must hold for all x. Since it holds for all x, it must hold for
particular values of x, and we choose these values of x to make it easy to solve for A,
B, and C.

Consider x = 1. Substituting 1 in for x into equation (11) we get:

1 = A(−1)(−2) +B(0)(−2) + C(0)(−1) = 2A ⇒ A =
1

2

Likewise, let us consider x = 2 and x = 3. Substituting these values into equation (11)
gives us respectively,

1 = A(0)(−1) +B(1)(−1) + C(1)(0) = −B ⇒ B = −1

1 = A(1)(0) +B(2)(0) + C(2)(1) = 2C ⇒ C =
1

2
.

Thus we have (going back to equation (9)):

1

(x− 1)(x− 2)(x− 3)
=

1/2

x− 1
+
−1

x− 2
+

1/2

x− 3

where we see that the right-hand side is much easier to integrate than the left side.
We can check our answer by adding the fractions on the right-hand side (requiring us
to get a common denominator) and checking to be sure we get the left-hand side.

Note that in general, if we want to solve for 2 unknowns, we need 2 x values; if we
want to solve for 3 unknowns, we need 3 x values; etc. This is because if we want to
solve for n unknowns we need n equations that are not redundant.
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2. Find the partial fraction decomposition of

3x3 + x− 2

x2(x2 + 1)

We first note that the degree of the numerator (3) is less than the degree of the
denominator (4). The denominator is already factored, and from the discussion above
we know that the form of the partial fraction decomposition is

3x3 + x− 2

x2(x2 + 1)
=
A

x
+
B

x2
+
Cx+D

x2 + 1
(12)

First get the denominators of each term the same by multiplying each term on the
right-hand side by special forms of 1:

3x3 + x− 2

x2(x2 + 1)
=
A

x

x(x2 + 1)

x(x2 + 1)
+
B

x2
(x2 + 1)

(x2 + 1)
+
Cx+D

x2 + 1

x2

x2
. (13)

Because the denominators are the same, in order to satisfy the above equation, we now
only need to be sure the numerators are equal. Examining the numerators only we
have

3x3 + x− 2 = Ax(x2 + 1) +B(x2 + 1) + (Cx+D)x2 (14)

= Ax3 + Ax+Bx2 +B + Cx3 +Dx2 (15)

The above equation says that we must find the values of A, B, C, and D so that the
two polynomials (the one on the left side and the one on the right) are equal. Two
polynomials are equal if and only if their coefficients are equal. So we look at the
coefficients of x3, x2, x, and x0 (constants), to give us 4 equations for the 4 unknowns:

x3 : 3 = A+ C

x2 : 0 = B +D

x1 : 1 = A

x0 : −2 = B

It turns out that these 4 equations are easy to solve for our unknowns, but in general
one can use the technique of elimination to solve for the 4 unknowns. In this case, the
third and fourth equations tell us that A = 1 and B = −2. Using these values in the
first two equations gives C = 3− 1 = 2 and D = −B = 2. Using these values, we can
now write equation (12) as:

3x3 + x− 2

x2(x2 + 1)
=

1

x
+
−2

x2
+

2x+ 2

x2 + 1

To integrate the last term we rewrite the fraction as:

2x+ 2

x2 + 1
=

2x

x2 + 1
+

2

x2 + 1
.

The first of these terms can be integrated using u-substitution, and the second is of

the form
1

u2 + a2
which has an integral of

1

a
tan−1

u

a
+ C.
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Problems

1. Find the partial fraction decomposition of

x3 + 1

(x2 + 1)2

Solve for the unknown coefficients, but do not integrate.

2. Evaluate ∫ x− 3

x2 − 3x+ 3
dx

3. Integrate

x2 + 2

(x2 + x+ 1)(x− 1)

(Hint: to integrate one of the terms, consider completing the square)

4. Integrate

x3 − x− 3
√

2

x2 − 2

5. What happens when you try to solve for A, B, and C for the partial fraction decom-
position:

1

(x2 − 1)(x− 1)
=

A

x− 1
+
Bx+ C

x2 − 1
?

Try to solve for A, B, and C, and show all work. What is wrong with this formulation?
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