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1. August 23, 2022

This class is, as its name makes clear, all about differential equa-
tions. Let’s start with an example that is probably similar to something
you’ve seen in Calculus.

Example 1.1. The equation

dy

dx
= 7y

is a differential equation. The unknown in this equation, y, stands for
a function. What makes this equation a differential equation is that
the equation relates the mystery function and its derivative.

1
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Let’s see if we can guess a solution. This equation might remind us
of a curious calculus coincidence. If the 7 wasn’t there, we would be
looking for a function whose derivative is equal to itself; ex would work.

Let’s try y = 7ex for our original equation. To test it, we plug it in:

y = 7ex  y′ = (7ex)′ = 7ex 6= 7y = 49ex.

How about putting the 7 somewhere else:

y = e7x  y′ = (e7x)′ = e7x(7x)′ = 7e7x = 7y.

So e7x is a solution!
Could there be any others?

y = 5e7x  y′ = (5e7x)′ = 5e7x(7x)′ = 7(5e7x) = 7y.

In general, y(x) = Ce7x is a solution for any constant C.

Of course, at the end of the day, nothing was special about 7. If we
replaced 7 by any real number a, for the same reason, we would find
that for the differential equation

y′ = ay

the general solution is

y(x) = Ceax.

Guessing, while successful here, is not going to be our preferred
method in the class. Let’s savor this victory, and be prepared to collect
many methods for solving differential equations as we progress through
the course.

Types of differential equations (§1.1). There are many different
ways of throwing together functions and derivatives in an equation, so
we’ll need some terminology to orient ourselves.

Definition 1.2. An ordinary differential equation (ODE) is a differen-
tial equation involving only one independent variable; i.e., derivatives
with respect to just one variable.

For example,
d2y

dt2
+ t

dy

dt
= −y + cos(ty)

is an ordinary differential equation.
In general an ODE is an equation of the form

F (t, y, y′, y′′, . . . , y(n)) = 0

for some function F where y = y(t): an equation relating the function
y with its derivative(s).
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Definition 1.3. A partial differential equation (PDE) is a differential
equation involving multiple independent variable; i.e., derivatives with
respect to different variables.

For example,

∂u

∂t
− 5

∂u

∂x
= 0

and
∂2z

∂x∂y
− z2 = xy

are PDEs. A solution of the first PDE would be a function u(x, t) that
depends two independent variables x and t.

The “ordinary” vs “partial” refers to what type of derivatives see.
This is a class about ODEs. Almost all of the rest of the differential

equations we see this semester will be ordinary!

Definition 1.4. The order of a differential equation is the highest
order derivative that occurs in the equation.

For example,

yy′′ + y′′′ +
1

y
= 5x

is a third order ODE, due to the y′′′ term and

d2y

dt2
+ t

dy

dt
= −y + cos(ty)

is a second order ODE.

Definition 1.5. A linear ODE is any ODE of the form

an(t)y(n) + an−1(t)y
(n−1) + · · ·+ a2(t)y

′′ + a1(t)y
′ + a0(t)y = f(t).

For example,

5ty′′ + ln(t)y′ + y = cos(t)

is a second order linear ODE, but

yy′ + 5y = 7

and

(y′)3 − ty2 = 3et

are first order nonlinear ODEs.
We will be especially interested in linear ODEs in this course!
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Discussion Questions.

(1) Is the differential equation y′ = y2/3 ordinary? linear? What is
its order?

Ordinary yes, linear no, order 1.

(2) Which of the following is a solution to the differential equation
y′ = y2/3:
(a) y = 8t2

(b) y = e2t/3

(c) y = 1
27
t3

(d) y = 0 (constant function 0)

(a) No: y′ = 16t 6= y2/3 = 4t4/3.
(b) No: y′ = 2/3e2t/3 6= y2/3 = (e2t/3)2/3 = e4t/9.
(c) Yes: y′ = 1

9
t2 = y2/3.

(d) Yes: y′ = 0 = y2/3.

(3) There is a solution to xy′′ = (4x− 4)y of the form y = xeax for
some real number a. Find a.

By the product rule,

y′ = (ax+ 1)eax and y′′ = (a2x+ 2a)eax,

so

xy′′ − (4x− 4)y = (a2x2 + 2ax)eax − (4x− 4)xeax.

If this is zero, we must have

a2x2 + 2ax = 4x2 − 4x

as functions of x, so a = −2.

(4*) If f, g are solutions to y(3) +2exy(2)−y = cos(x), show that f+g
2

is too.
(5*) Using only calculus, justify the claim we made earlier that y =

Ceax is the general solution to y′ = ay for any a ∈ R. That
is, explain why there aren’t any other solutions (exponential or
otherwise).

Initial value problems. In our first example, we saw that there are
many solutions to the differential equation y′ = 7y. To pin one down,
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we might specify a value for our function at a point. The system{
y′ = 7y

y(2) = 4

is a example of an initial value problem (IVP). Geometrically, y(2) =
4 corresponds to the condition that the graph of our solution passes
through (2, 4).

2. August 25, 2022

Example 2.1. {
y′ = 7y

y(2) = 4

is a example of an initial value problem. Geometrically, y(2) = 4 corre-
sponds to the condition that the graph of our solution passes through
(2, 4).

We can solve this using our solution of y′ = 7y from earlier. We have

y = Ce7x y(2) = 4

so
4 = Ce7·2

and
C = 4e−14.

That is,
y = 4e−14e7x = 4e7x−14.

Modeling with differential equations (§1.3). Differential equa-
tions is one of the most useful areas of math for applications, since so
many real life things are described effectively by differential equations.
A mathematical model is a description of some system or phenomenon
by an equation or a formula. A model is rarely perfect, since we can’t
even know all of the factors that might affect something, but we can
often use them to understand things better.

Let’s start with a basic example.

Example 2.2. A classical model of human population growth is based
on the assumption that the rate at which the population of a country
grows is proportional to the population of that country. To express
this as a differential equation, let P the population of a country. We
are interested in how it changes, so let t be a variable for time and view
P as a function of t. To say that two things are proportional means
that the exists a constant k (called the constant of proportionality)
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such that k times the first quantity is the second quantity. The rate of
change of the population is dP

dt
. Thus, our equation is

dP

dt
= kP

for some constant k. We do not know what k is without further infor-
mation.

This is the only differential equation we’ve solved! We must have

P (t) = Cekt.

Given two data points for any specific population, we can determine C
and k.

Let us try to set up a more complicated model.

Example 2.3. Say that we have a tank of water. At first, it holds 500
liters of pure water (no salt). After switch is flipped, salt water that
has 7 grams of salt per liter starts flowing in at a rate of 2 liters per
minute, and water from the bottom of the tank starts flowing out at a
rate of 2 liters per minute. Let’s model the amount of salt in the tank
at a given time after the switch is flipped.

Let A be the amount of salt in the tank, in grams, and t be the
amount of time since the switch is flipped in minutes. We need to
understand the rate of change of A. Salt enters at a rate of 7 · 2 = 14
grams per minute. To find the rate at which salt exits, the amount of
salt in an average liter of water is A/500 grams per liter, so the amount
of salt exiting is 2 · A/500 = A/250.

We obtain the differential equation

dA

dt
= 14− A

250
.

We also have the initial condition A(0) = 0.
We will learn how to solve systems like this soon.

Discussion Questions. The government of a country wants to re-
move counterfeit money from circulation. Say there are 20 million
total bills in circulation. Every day, 4 million of its bills pass though
federal banks, and every counterfeit bill collected is replaced by a legal
one. Say that half of the total bills in circulation today are counterfeit.
Let’s assume that the total number of bills in circulation stays constant
and that no more counterfeit bills are being introduced. Our goal is
to find an initial value problem modeling the percentage of counterfeit
bills in circulation as time passes.
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(1) Introduce variables to keep track of the quantities we are in-
terested in. What is the independent variable and what is the
dependent variable? What are the units for each?

(2) To set up a differential equation, we want to relate the depen-
dent variable with its rate of change. On average, what is the
change in the number of counterfeit bills each day1?

(3) Express the previous part as a differential equation.
(4) We also need an initial condition. Write it down.
(5) This is a type of differential equation we’ve solved already. Find

an explicit solution.
(6) Based on your model, when will the total number of counterfeit

bills pass below 3 million?

(1) Take t for time (number of days after today), and C to be
the number of millions of counterfeit bills in circulation. C
is dependent on t.

(2) First the number of bills that pass through banks on an
average day is 4C/20 = C/5: the proportion of counter-
feit bills times the total number of millions of bills passing
through the banks. Thus, C decreases by C/5 on average
each day.

(3) C ′ = −C/5.
(4) C(0) = 10.
(5) C(t) = ke−t/5 is the general solution. We plug in C(0) = 10

to get k = 10, so C(t) = 10e−t/5.
(6) C(t) = 3 gives us 10e−t/5 = 3. Then t = −5 ln(3/10) ≈ 6.

It should take about 6 days.

Let’s do an experiment to test our model. Each coin you’ve been
given represents a million bills. Some represent valid coins and some
represent counterfeits. Every day, take four random coins; replace the
counterfeits with legal ones, and leave the legal ones alone.

(1) Discuss whether your model for the previous situation is rele-
vant to this experiment. What aspects fit the story well, and
what ones don’t?

(2) Run the experiment, keeping track of the number of counterfeit
bills each day, and how long it takes to get down to 3 counter-
feits. Even better, run the experiment a few times.

1Hint: First figure out how many counterfeit bills pass through federal banks
each day, on average.



8

Now let’s change our original story. As before, every day, 4 million of
its bills pass though federal banks, and every counterfeit bill collected
is replaced by a legal one. Say that half of the 20 million total bills in
circulation today are counterfeit. But now, let’s assume that 1 million
new legal bills and 1 million new counterfeit bills are put into circulation
each day.

(1) Create a new differential equation and initial value problem to
model this situation2.

(2) Run an experiment similar to the one above adapted to this
situation.

(3) Based on the experiment, what do we expect to happen to the
currency as time passes?

(1) Let’s use t and C as names again. The total number of bills
at time t is now 20 + 2t. Now C ′(t) = 1− 4C

20+2t
= 1− 2C

10+t
,

and C(0) = 10 again.

3. August 30, 2022

We will now spend a while focusing on first-order ODEs and corre-
sponding initial value problems: all of Section 1.2 and Chapter 2 will
be about this setting.

Existence and uniqueness for initial value problems (§1.2). If
our goal in solving an initial value problem{

y′ = f(x, y)

y(x0) = y0

is to find the function that satisfies the two conditions, for this goal to
make sense, there should be a function, and only one function that sat-
isfies the two conditions. The existence question for an IVP is whether
there is any function that satisfies both conditions; the uniqueness
question for an IVP is whether there is at most function that satisfies
both conditions. (Actually finding this function is a different question.)

Let’s consider these things in some examples we have seen before.

Example 3.1. In Example 2.1, we considered the IVP{
y′ = 7y

y(2) = 4

2Hint: You might find it helpful to write a closed formula for the number of total
bills in circulation at a given time first.
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and saw that the function y = 4e7x−14 was the one and only solution.
Thus, there exists a unique solution in this case.

On the other hand, we have the following.

Example 3.2. Consider the IVP{
y′ = y2/3

y(0) = 0
.

We saw in the Discussion Questions from Aug 25 that y = 0 and y =
1
27
t3 both satisfy the first differential equation. Both of these functions

also satisfy the initial condition, so they are also both solutions to the
IVP. Here we have an IVP for which the solution is not unique.

We can even have no solution sometimes.

Example 3.3. Consider the IVPy
′ =

{
1 if y ≥ 0

−1 if y < 0

y(0) = 0

.

This IVP has no solution, no matter how small of an interval! (Chal-
lenge: why not?)

Luckily, there is a theorem that guarantees existence and uniqueness
of solutions IVP’s under certain hypotheses.

Theorem 3.4 (Picard-Lindelöf). For the IVP{
dy
dx

= f(x, y)

y(x0) = y0

and some rectangle R in the (x, y)-plane containing (x0, y0) in its in-
terior, there exists a unique solution on some possibly smaller interval
(x0 − h, x0 + h), so long as f and ∂f

∂y
are continuous on R.

There’s a lot of fine print, but here is the upshot: There exists a
unique solution to the IVP{

dy
dx

= f(x, y)

y(x0) = y0

near x0, so long as f and ∂f
∂y

are continuous around (x0, y0).
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Example 3.5. Consider the differential equation

dy

dx
= 5xy.

We want to use the Picard-Lindelöf Theorem to show that for any
initial condition y(x0) = y0, there is a unique solution near x0. The
f(x, y) of the Theorem is 5xy; this is continuous on all of R2. We also
need to look at ∂f

∂y
= 5x. This is also continuous on all of R2. We

conclude that {
dy
dx

= 5xy

y(x0) = y0

has a unique solution, no matter what x0 and y0 are.

Example 3.6. Let’s consider{
y′ = y2/3

y(x0) = y0
.

Here f(x, y) = y2/3 and ∂f
∂y

(x, y) = 2
3
y−1/3. f is continuous everywhere,

but f ′ is only continuous where y0 6= 0. Thus, if y0 6= 0, then there is
a unique solution.

However, if y0 = 0, the theorem does not apply. We looked at
this example earlier and saw that the solutions were not unique for
(x0, y0) = (0, 0).

Example 3.7. Let’s consider{
y′ = y2

t2−4
y(−1) = 3

.

What is the largest interval on which the Picard-Lindelöf Theorem
guarantees the existence of a unique solution? We have, in the notation
of the Theorem,

f =
y2

t2 − 4

∂f

∂y
=

2y

t2 − 4
.

These are continuous except when t = ±2. Thus, any rectangle whose
base is contained in (−2, 2) will satisfy the hypotheses of the theorem,
so (−2, 2) is the interval we seek.

Solution curves from slope fields (§2.1). There is a great way to
visualize solutions to differential equations without solving them. The
idea is to think of dy

dt
geometrically as the slope of the graph of y.
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Example 3.8. Consider the differential equation

y′ = 3− y.

We won’t try to write down a solution yet. Instead, on the plane, we
draw little lines with slope 3− y at various points.

We can use this to sketch the solution to the IVP

{
y′ = 3− y
y(2) = 2

by starting at (2, 2) and going along with the flow.
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Or {
y′ = 3− y
y(−4) = 4

:

The picture we drew above is called a slope field.

Discussion Questions. Draw a slope field for the differential equa-
tion

y′ = x+ y
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and use it to sketch the solutions with initial conditions

(1) (0, 1)
(2) (0, 0)
(3) (0,−1)
(4) (0,−2)

4. September 1, 2022

Example 4.1. As we discussed, we can use slope fields to try to un-
derstand solutions of an IVP without finding a formula for an explicit
solution. Let’s return to our counterfeiting example (where new good
and bad bills were being introduced, and the banks replaced bad ones
with good ones). We found the following IVP for our situation:{

C ′(t) = 1− 2C
10+t

C(0) = 10
.

We wanted to know whether the number of counterfeits would con-
tinue to grow (and if so, how fast). Let’s sketch a slope field for our
differential equation:
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and sketch a curve for the initial condition:

It looks like the number of counterfeits decreases at first and maybe
starts to rebound. We will solve this analytically very soon to confirm
our guess.

Autonomous differential equations. Example 3.8 belongs to a class
of equations that is worth singling out.

Definition 4.2. A differential equation of the form

y′ = f(y)

is said to be autonomous.
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The behavior of a solution of an autonomous differential equation is
determined entirely by the current value of the function (and not the
independent variable).

For an autonomous differential equation, whether a solution is in-
creasing, decreasing, or constant at a point only depends on the y-value
at that point. We can determine this either algebraically or using the
slope field.

Example 4.3. Consider the autonomous differential equation

y′ = y3 − 2y2.

To figure out when y is increasing, we figure out when 0 < y′ = y3−2y2.
We do a little algebra to figure out. Factoring, we see that the zeroes
of the right-hand side are 0 and 2, so the sign of y can only change
at 0 and 2. On (−∞, 0), y3 − 2y2 < 0; at 0, it is zero; on (0, 2) it is
negative; at 2, it is 0; on (2,∞), it is positive.

Thus, a solution y is increasing when 2 < y < ∞, is decreasing on
(−∞, 0) ∪ (0,∞), and is constant if y = 0 or 2.

We can also use the slope field to determine when it is increasing or
decreasing.

Let’s sketch some solutions:
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A constant solution to an autonomous differential equation is also
called an equilibrium solution.

Review of integration. Now we will start to collect some techniques
for solving differential equations. Of course integration will play a big
role. Let’s review some basic techniques of integration. We will usually
be using indefinite integration or antidifferentiation in this class. First,
let’s recall a list of building block functions whose integrals we need to
know.

•
∫
xn dx = xn+1

n+1
+ C when n 6= −1.

•
∫

1
x
dx = ln |x|+ C.

•
∫
ex dx = ex + C.

•
∫

sin(x) dx = − cos(x) + C.
•
∫

cos(x) dx = sin(x) + C.

Here are a couple more special ones.

•
∫

dx√
1−x2 = arcsin(x) + C.

•
∫

dx
1+x2

= arctan(x) + C.

We also have many rule for how to integrate complicated functions
in terms of integrating smaller parts. There are two easy rules to get
us started.

•
∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx.

•
∫
cf(x) dx = c

∫
f(x) dx for any constant c.

Unlike with derivatives, there is no direct rule for computing the inte-
gral of a composition or a product. Instead, we have “u-substitutions”
and “integration by parts”.
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u-substitution is a technique that is likely to work when we can see
some function and something like its derivative inside the function we
are trying to integrate. In this case, we set the function to be u, we set
du = u′(x) dx, and we try to rewrite our integrand as some function of u
times du (and get rid of our starting variable entirely). u-substitutions
also work well when instead of some function of x, we have a function
of x − a or a function of ax for some constant a. This is the main
technique that we will want to use, other than the basic rules.

Example 4.4. To compute
∫
x2 cos(x3) dx, take u = x3, so du = 3x2 dx.

Then we have x2 dx = 1
3
du, so our integral is∫

1

3
cos(u) du =

1

3
sin(u) + C =

1

3
sin(x3) + C.

Integration by parts is a technique that might work when our inte-
grand is a product of two things, one of which we know how to integrate
(i.e., looks like the derivative of something). The general rule is if we
can find functions u(x), v(x) such that our integral is

∫
u dv (where

dv = v′(x) dx), the we have∫
u dv = uv −

∫
v du;

and if we can integrate
∫
v du, we are done. A rule of thumb for what

to choose for u vs what to choose for dv in integration by parts is
LIATE (log, inverse trig, algebraic, trig, exponential): stuff on the left
is usually better for u’s and stuff on the right is usually better for dv’s.

Example 4.5. To compute
∫
xex dx, take u = x and dv = ex dx. Then

du = dx and v = ex. Then we have∫
xex dx = xex −

∫
ex dx = xex − ex + C = (x− 1)ex + C.

Last but not least, we have a big table of integrals in the front cover
of our text.

5. September 6, 2022

Separable first-order equations (§2.2). Now we are ready to solve
some differential equations! First we will address first-order equations
of a special form: separable eqautions.

Definition 5.1. A first-order ODE is separable if it can be written in
the form

y′ = f(x)g(y)
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for some function f that only involves the independent variable and
some function g that only involves the dependent variable.

For example,

y′ = x2/y, y′ =
3
√
y2 + 1

cos(x)
, and y′ = 3− y

are all separable (with f(x) = x2 and g(y) = 1/y in the first one), but

y′ = x+ y and y′ = sin(xy)

are not. Note that a separable equation may or may not be linear, but
is always a first order ODE.

Here’s how to solve a separable ODE: Write y′ as dy
dx

and pretend
that the dy and dx are separate things. Take

dy

dx
= f(x)g(y)

and multiply by dx and divide by dy on both sides to get

dy

g(y)
= f(x) dx.

(This is why we call the equation separable: the independent and de-
pendent variables now occur on separate sides of the equation.) Now
integrate both sides: ∫

dy

g(y)
=

∫
f(x) dx,

to get an equation for x and y that is no longer differential!

Slogan 5.2. To solve a separable equation, separate and integrate!

Example 5.3. Let’s start with an equation we saw in Example 3.8:

y′ = 3− y.
Write this as

dy

dx
= 3− y

and rearrange to get
dy

3− y
= dx.

Integrate both sides. For the LHS with use the u-sub u = 3 − y, so
du = −dy. The integral becomes∫

dy

3− y
=

∫
−du
u

= − ln |u|+ C = − ln |3− y|+ C = ln
1

|3− y|
+ C.
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We then get

ln
1

|3− y|
=

∫
dy

3− y
=

∫
dx = x+ C.

Note that we only need the constant of integration on one side. Then
to solve for y, take exponentials:

eln(
1
|3−y| ) = ex+C ,

1

|3− y|
= ex+C .

Then

|3− y| = e−x−C

3− y = ±e−x−C

y = 3± e−x−C

Since e−x−C = e−xe−C is just some other constant C ′ times e−x, we
could also write

y = 3 + C ′e−x.

Example 5.4. Take
dy

dt
= t+ ty2.

It doesn’t look separable yet, but once we factor

dy

dt
= t(1 + y2),

it becomes clear that it’s separable. Separate variables:

dy

1 + y2
= t dt,

integrate: ∫
dy

1 + y2
=

∫
t dt,

arctan(y) =
t2

2
+ C,

and solve for y by taking tangent of both sides:

y = tan(arctan(y)) = tan

(
t2

2
+ C

)
.

This is our general solution!
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Discussion Questions.

(1) Which of the following equations is separable?
(a) y′ + 2y = x3.
(b) cos(x)y′ = sin(y).
(c) y′ − xy = 1 + x+ y.

(b) and (c), but not (a)

(2) Find the particular solution to the IVP{
ex y′ = 1

y

y(0) = 1
.

This is separable since we rewrite as y′ = e−x 1
y
. Then

yy′ = e−x  y dy = e−x dx 
∫
y dy =

∫
e−x dx,

 
y2

2
= −e−x + C  y =

√
C − 2e−x,

and using the initial condition,

1 = y(0) =
√
C − 2e0 =

√
C − 2 C = 3,

so we have
y =
√

3− 2e−x.

Sometimes we encounter integrals that are just impossible:

Linear equations (§2.3). Now we solve another large class of differ-
ential equations: first order linear ODE’s. Let’s recall that a differential
equation is a first order linear ODE if we can write it in the form

a1(t)y
′ + a0(t)y = f(t)

for some functions a1(t), a0(t), f(t) that only involve the independent
variable t.

We are going to learn a magic trick to solve these: this really is a
rabbit-in-the-hat idea. To motivate this wacky idea, I want to consider
a couple of small examples to get the idea.

Example 5.5. Consider the differential equation

ty′ + y = t2.

After trying a few things, we realize this isn’t separable. However, the
left-hand side, as written, is interesting. Notice that, by the product
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rule, we have
(ty)′ = ty′ + t′y = ty′ + y.

Thus, we have
(ty)′ = t2,

 ty =

∫
(ty)′ dt =

∫
t2 dt =

t3

3
+ C,

so

y =
t2

3
+
C

t
.

That was lucky! What if we had

y′ +
3

t
y = t

instead? This is still not separable. I will magically multiply by t3 to
get

t3y′ + 3t2y = t4.

By reverse product rule on the left-hand side, we have

(t3y)′ = t4.

Now we integrate to get

t3y =

∫
t4 dt =

t5

5
+ C,

so

y =
t2

5
+
C

t3
.

This is the idea we will use: multiply our equation through by some-
thing to turn it into an equation where the left-hand side comes from
the product rule! But how do we come up with the magic multiplier?

6. September 8, 2022

Idea 6.1. Given a linear first order ODE of the form

y′ + p(t)y = q(t),

multiply by an integrating factor µ(t) so the left-hand side collapses
via the product rule:

µ(t)y′ + µ(t)p(t)y = µ(t)q(t)
(?(t)y)′ = ?(t)y′ + ?′(t)y

.

The mystery function ?(t) has to be the same as our integrating factor
µ, and we also have to have

µ′ = µp(t).
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This is separable now: we solve

µ′

µ
= p(t)

by integrating

ln |µ| =
∫
p(t) dt,

and isolating µ

µ = ±e
∫
p(t) dt.

Let’s take the positive one: Set µ = e
∫
p(t) dt.

Definition 6.2. Given a linear first order ODE of the form

y′ + p(t)y = q(t),

we call the function
µ = e

∫
p(t) dt

the integrating factor of the equation. For the integrating factor, we
can take just one antiderivative (i.e., ignore the constant of integration),
since this is just something we’re using to get a solution and not a
solution.

Slogan 6.3. For the linear first order ODE

y′ + p(t)y = q(t),

multiply by the integrating factor

µ = e
∫
p(t) dt,

realize the left-hand side as (µy)′, and integrate.

Then we multiply by the integrating factor, realize the left-hand side
as a result of the product rule, and integrate to solve.

Example 6.4. Let’s solve the ODE that arose in our model of coun-
terfeit currency from Aug 25. We found the equation

C ′(t) = 1− 2C

10 + t

which we can write as

C ′ +
2

10 + t
C = 1.

The integrating factor is µ = e
∫

2
10+t

dt. We should simplify this. Set
u = 10 + t, so du = dt, then∫

2

10 + t
dt =

∫
2

u
du = 2 ln |u| = ln((10 + t)2)
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so

µ = eln((10+t)
2) = (10 + t)2.

Now we multiply by this integrating factor:

(10 + t)2C ′ + (10 + t)2
2

10 + t
C = (10 + t)2

 (10 + t)2C ′ + 2(10 + t)C = (10 + t)2.

Now we recognize the left-hand side as coming from the product rule:(
(10 + t)2C

)′
= (10 + t)2C ′ + (10 + t)2

2

10 + t
C,

so we have (
(10 + t)2C

)′
= (10 + t)2.

Now we integrate:

(10 + t)2C =

∫
(10 + t)2 dt.

Use the sub u = 10 + t, du = dt to get∫
u2 du =

u3

3
+ k =

(10 + t)3

3
+ k.

We used k for the constant of integration since the name C is taken!
Thus,

(10 + t)2C =
(10 + t)3

3
+ k

 C =
10 + t

3
+

k

(10 + t)2
.

We also recall our initial condition C(0) = 10 and plug it in to get

10 = C(0) =
10 + 0

3
+

k

(10 + 0)2
=

10

3
+

k

100

and solve to get k = 2000
3

. Thus,

C(t) =
10 + t

3
+

2000

3(10 + t)2
.

We can now graph this in a calculator:
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and based on the formula, we know that for t � 0, the second term
goes to zero, and the first term gets larger and larger. We conclude
that the number of counterfeits will continue to grow in the long run!

Example 6.5. Let’s solve

xy′ = (x+ 3)y = x2e−x.

We need to put it in the correct form first, so divide by x:

y′ + (1 +
3

x
)y = xe−x.

In the earlier notation, p(x) = (1 + 3
x
). The integrating factor is

µ(x) = e
∫
(1+ 3

x
) dx = ex+3 lnx = exelnx

3

= exx3 = x3ex.

Multiply by µ(x):

x3exy′ + (1 +
3

x
)x3ex = (x3ex)(xe−x)

and realize LHS as coming from product rule

(x3exy)′ = x4.

Now we integrate:

x3exy =
x5

5
+ C

y =
x2

5
e−x +

C

x3
e−x.
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Discussion Questions. Find the general solution of the differential
equation

y′ = x+ y.

Rearrange as y′−y = x. Then the integrating factor is e
∫
−1 dx =

e−x. Multiply through and do the product rule backwards to get

(e−xy)′ = e−xy − e−xy′ = xe−x.

We now integrate both sides. On the right, we can use integration
by parts with u = x, dv = e−x dx, du = dx, v = −e−x. We get
(leaving aside the constant of integration)∫

xe−x dx = −xe−x −
∫

(−e−x) dx

= −xe−x +

∫
e−x dx

= −xe−x − e−x

= −(x+ 1)e−x

so
e−xy = −(x+ 1)e−x + C.

Then multiply through to get

y = −(x+ 1) + Cex.

7. September 13, 2022

Let’s do one more example of solving a first-order linear equation
with integrating factors.

Example 7.1. Let’s find the general solution to

x2y′ − y = 5.

First, we put it in the form from which we can read off the integrating
factor:

y′ − 1

x2
y =

5

x2
.

Now, the integrating factor is

µ(t) = e
∫
−1/x2 dx = e1/x.

Multiply through to get

e1/xy′ − e1/xx2y =
5e1/x

x2
.
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We realize the left-hand side as (e1/xy)′ (and we double-check it using
the product rule and the chain rule):

(e1/xy)′ =
5e1/x

x2
.

Thus

e1/xy =

∫
5e1/x

x2
dx = −5

∫
eu du = −5e1/x + C.

using the u-substitution u = e1/x, du = −e1/x/x2 dx. Finally, we get

y = −5 + Ce−1/x

as the general solution.

Euler’s Method (§2.6). We now have great methods to solve certain
first order ODEs, namely separable and linear ones. But this doesn’t
encompass all of them. There is a way to solve any IVP for first order
ODE of the form {

dy
dt

= f(t, y)

y(t0) = y0
,

at least approximately. The idea is that

dy

dt
≈ ∆y

∆t
=

small change in y

small change in t
,

which we can rewrite as

∆y ∼=
dy

dt
∆t.

So, to approximate our solution, we start at our initial value y(t0) = y0,
keep adding small amounts ∆t to t, and each time we add

dy

dt
∆t = f(t, y) ∆t

to our y-value. This is the idea behind Euler’s method.
More concretely, we fix a step size h, which plays the role of our

small change in t that we called ∆t. This should be a small positive
number. (Though how small is a good choice can be difficult to pin
down.)

We start with the values t0 and y0 from the initial condition, and
make a list a t-values t0, t1, t2, t3, . . . given by the rule

tn = t0 + nh.

For the corresponding y-values, we go from one to the next by the rule

yn+1 = yn + hf(tn, yn).
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Example 7.2. Take the IVP{
y′ = x+ y2

y(0) = 0
.

Let’s use Euler’s method with step size 1 to approximate a solution.
We start with x0 = 0 and y0 = 0. Then

x1 = 1, y1 = 0 + (0 + 02)1 = 0

x2 = 2, y2 = 0 + (1 + 02)1 = 1 . . .

x3 = 3, y3 = 1 + (2 + 12)1 = 4

x4 = 4, y4 = 4 + (3 + 42)1 = 23 . . .

Let’s also try step size h = .5.

x1 = .5, y1 = 0 + (0 + 02).5 = 0

x2 = 1, y2 = 0 +
(
.5 + 02

)
.5 = .25

x3 = 1.5, y3 = .25 +
(
1 + (.25)2

)
.5 = .78125

x4 = 2, y4 = .78125 +
(
1.5 + (.78125)2

)
.5 ≈ 1.836425

Note that the different step sizes gave different answers for y(2). In
general, smaller step sizes give better approximations, but take longer
to compute.

Discussion Questions. Use Euler’s method with step size h = 0.5 to
approximate a solution to {

y′ = −ty2

y(0) = 1

up to t = 2.

t0 = 0, y0 = 1.

t1 = .5, y1 = 1 + (−0 · 12).5 = 1.

t2 = 1, y2 = 1 + (−.5 · 12).5 = .75

t3 = 1.5, y3 = .75 + (−1 · .752).5 = .46875

t4 = 2, y4 = .46875 + (−1.5 · .468752).5 ≈ .30395
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Linear models (§3.1). We now want to apply our ability to solve
many first-order ODEs arising from real world situations, like the ones
we saw in the first couple weeks.

Example 7.3. Newton’s law of cooling says that the rate at which
an object cools/heats up is proportional to the difference between its
temperature and the temperature of its surroundings. First, let’s state
Newton’s law of cooling as a general model with a differential equation.

Take T to be the temperature of the heating or cooling object. We
are thinking of this as changing in time, so let t denote time, and think
of T as a function of t. Also, the temperature of the surroundings plays
a role, so take T0 to the be ambient temperature. Then the rule is

dT

dt
= k(T − T0)

where k is some constant of proportionality.

8. September 15, 2022

Let’s now apply it to a specific situation. Say we place a cake in a
400◦F oven. At first, the cake is 70◦F and after 10 minutes it is 100◦F.
How long will it take for the cake to reach 150◦F?

Based on our story, T0 = 400. We find the general solution of our
differential equation

dT

dt
= k(T − 400).

This is separable and linear, so we can solve it two different ways. Let’s
use an integrating factor.

T ′ − kT = −400k

µ = e
∫
−k dt = e−kt

 e−ktT ′ − ke−ktT = −400ke−kt

 (e−ktT )′ = −400ke−kt

 e−ktT =

∫
−400ke−kt dt = −400k

∫
e−kt dt =

−400k

−k
e−kt+C = 400e−kt+C

 T = 400 + Cekt.

We now have to find C and k for a particular function of T . Plug in
T (0) = 70 to get

70 = T (0) = 400 + Ce0 = 400 + C

 C = 70− 400 = −330,

so
T = 400− 330ekt.
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Then, plug in T (10) = 75 to get

100 = 400− 330e10k

 −300 = −330e10k

 
10

11
= e10k

 10k = ln(
10

11
)

 k = ln(
10

11
)/10

so
T = 400− 330et(ln

10
11

)/10.

Now we can set T (t) = 150 and solve

150 = 400− 330et(ln
10
11

)/10

 −250 = −330et(ln
10
11

)/10

 et(ln
10
11

)/10 = 25/33

 t(ln
10

11
)/10 = ln(25/33)

 t = 10 ln(
25

33
)/ ln(

10

11
) ≈ 29.

Example 8.1. We can also come up with explicit solutions for the
mixing models of the type we considered earlier. Say that we have a
tank of water with 300 gallons of fresh water right now. Water starts
flowing out at a rate of 3 gallons per minute, and water with 5 grams
of salt per gallon flows in at a rate of 6 gallons per minute. Let’s find
the amount of salt in the tank as a function of time.

Let S be the amount of salt in the tank in grams and t be time in
minutes. First we note that the tank has 300+3t gallons of water after
t minutes. The rate of salt coming in is 5× 6 = 30 grams per minute.
The rate of salt going out is 3 × S

300+3t
= 3

300+3t
S. The differential

equation modeling the situation is

S ′ = 30− 3

300 + 3t
S.

We also have the initial condition S(0) = 0.
Our ODE is linear first-order.

S ′ +
3

300 + 3t
S = 30.

The integrating factor is

µ = e
∫

3
300+3t

dt = e
∫
du/u = elnu = u = 300 + 3t
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with the u-sub u = 300 + 3t, du = 3 dt.

(300 + 3t)S ′ + 3S = 30(300 + 3t)

 
(
(300 + 3t)S

)′
= 30(300 + 3t)

 (300 + 3t)S =

∫
9000 + 90t dt = 9000t+ 45t2 + C

 S =
9000t+ 45t2 + C

300 + 3t
.

Now we plug in the initial condition S(0) = 0:

0 = S(0) =
C

300
,

so C = 0. Thus, we have

S =
9000t+ 45t2

300 + 3t
.

Logistic models (§3.2). We explore an important type nonlinear
first-order ODEs that commonly show up in mathematical models. One
place it arises is in population growth.

Example 8.2. We discussed earlier a model of population growth
wherein the rate of growth of a population of proportional to the pop-
ulation itself. This led to the model

dP

dt
= kP

where P is the population considered as a function of time t, and k is
some constant of proportionality. The general solution to this is of the
form

P (t) = Cekt.

This grows larger and larger and larger! A model such as this will not
describe the long-term growth effectively if there is some constraint on
the size of the population.

Suppose we consider a population, let’s say of squirrels in the city
of Lincoln. There is only so much food to go around so there should
be a maximum capacity for the population; let’s say that there’s food
enough for at most 100000 squirrels; let’s call this the total capacity .
Then 100000 − P is the amount of room for growth in the squirrel
population; let’s call this the remaining capacity . A logistic growth
model for the squirrel population supposes that the rate of growth of
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the population is jointly proportional to the population P and the re-
maining capacity 100000−P , meaning it is proportional to the product
P (100000− P ). That is, the logistic model says

dP

dt
= kP (100000− P ).

The constant k we take here should be positive.

9. September 20, 2022

Example 9.1. Let’s use our techniques from §2.1 to analyze this equa-
tion without solving it. This is an autonomous equation, so the behav-
ior (increasing vs decreasing vs constant) depends only on the value of
P and not on t. The right-hand side is positive when 0 < P < 100000,
negative when P < 0 or P > 100000, and constant for P = 0 or
P = 100000. Thus, the population grows when it is positive and below
capacity, decreases when above capacity, and stays constant if zero or
at capacity.

Definition 9.2. A logistic model is a model that supposes that the
rate of growth of some quantity P is jointly proportional to P and
Pc − P for some constant Pc.

A logistic equation is a differential equation of the form

dP

dt
= kP (Pc − P )

for some constants k and Pc. The constant Pc is called the total capacity
or carrying capacity .

Every logistic model can be expressed as a logistic equation.
Let’s see another example.

Example 9.3. A simple model for the spread of a rumor throughout a
population assumes that the rate at which the rumor spreads is jointly
proportional to the number of people informed and the number of peo-
ple not informed. Suppose the rumor spreads among a population of
4000 people.

Discussion Questions:

(1) Find an ODE modeling the number of people informed I based
the information above. (You may have an unknown constant of
proportionality k.)

(2) Based on the story, should your constant k be positive or neg-
ative?
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(3) Based on your model (and not just the story), determine whether
I is increasing, decreasing, or constant, based on the number of
people who know at the start.

(4) Suppose that 10 people know at the start. Without solving the
equation, try to sketch a graph of the solution to the IVP (even
without knowing k!).

We should have the equation

dI

dt
= kI(4000− I).

Since this is presumably increasing for values of I between 0 and
4000, then k should be positive. Now, the function kI(4000− I) is
zero when I = 0 or I = 4000, and is positive when 0 < I < 4000,
so we have equilibrium solutions for I = 0, 4000 and increasing
solutions for 0 < I < 4000.

The general logistic equation is separable, and we can find a general
solution to it. Take

dP

dt
= kP (Pc − P )

and separate to get

dP

P (Pc − P )
= k dt.
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To integrate the left-hand side, we recall the trick of partial fractions :
we write

1

P (Pc − P )
=
a

P
+

b

Pc − P
for constants a, b and solve:

1 = (Pc − P )a+ Pb = Pca+ P (b− a)

 a = 1/Pc, b− a = 0, b = 1/Pc, so∫
dP

P (Pc − P )
=

1

Pc

∫
dP

P
+

1

Pc

∫
dP

Pc − P

=
1

Pc
ln |P | − 1

Pc
ln |Pc − P |+ C

=
1

Pc
(ln |P | − ln |Pc − P |) + C =

1

Pc
ln

∣∣∣∣ P

Pc − P

∣∣∣∣+ C.

Then
1

Pc
ln

∣∣∣∣ P

Pc − P

∣∣∣∣ = kt+ C

ln

∣∣∣∣ P

Pc − P

∣∣∣∣ = kPct+ C∣∣∣∣ P

Pc − P

∣∣∣∣ = ekPct+C = eCekPct

P

Pc − P
= ±eCekPct

Since ±eC is just a constant in any case, let’s reuse the name C for
that other constant. Then

P

Pc − P
= CekPct

for some new constant C ′. Rearranging and solving gives

P = (Pc − P )CekPct = PcCe
kPct − PCekPct

 P + PCekPct = PcCe
kPct

 P (1 + CekPct) = PcCe
kPct

 P = Pc
CekPct

1 + CekPct
.

In particular, a logistic function can be written in the explicit form

f(t) = a
bect

1 + bect

for some constants a, b, c.
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In this class, you don’t need to know how to solve a logistic equation
or this general formula for a logistic function, just how to set one up
and analyze it at we did in Sections 2.1 and 2.6.

Higher-order differential equations (§4.1). For higher order dif-
ferential equations, we will focus especially on linear equations.

Definition 9.4. An ODE that can be written in the form

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = g(x)

where y(r) = dny
dxr

is an n-th order linear equation. If g(x) = 0, we say
that the equation is homogeneous ; otherwise, it is nonhomogeneous .

With a first-order equation, to get a particular solution, we specified
an initial condition of one value. For a higher-order ODE, we typically
need more initial conditions (or boundary conditions).

Example 9.5. Consider the differential equation

y′′′ = 5.

To find the general solution, we can just integrate three times:

y′′ =

∫
5 dt = 5t+ c1

y′ =

∫
5t+ c1 dt =

5

2
t2 + c1t+ c2

y =

∫
5

2
t2 + c1t+ c2 dt =

5

6
t3 +

c1
2
t2 + c2t+ c3.

To get to a particular solution, we need to know more than one value
of the function: we need three pieces of information of some sort to
determine the three c’s.

One natural possibility is to specify the values at three different
points. (This is an example of what we will call a boundary condition
soon.) Another possibility is to specify the values of y, of y′, and of
y′′ at the same point. (This is what we will call an initial condition in
this setting.)

For example, given the IVP
y(3) = 5

y(0) = 1

y′(0) = −2

y′′(0) = 5

we solve

1 = y(0) =
5

6
· 03 +

c1
2
· 02 + c2 · 0 + c3 = c3
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−2 = y′(0) =
5

2
· 02 + c1 · 0 + c2 = c2

5 = y′′(0) = 5 · 0 + c1 = c1

so we get a unique solution

y(t) =
5

6
t3 +

5

2
t2 − 2t+ 1.

Example 9.6. Suppose that we know that the solution IVP
y(3) + y′ = 0

y(π) = 0

y′(π) = 2

y′′(π) = −1

is of the form

y(x) = c1 + c2 sin(x) + c3 cos(x).

Let’s find a particular solution using the initial conditions.

0 = y(π) = c1 + c2 sin(π) + c3 cos(π) = c1 − c3
so c1 = c3.

2 = y′(π) = c2 cos(π)− c3 sin(π) = −c2
so c2 = −2.

−1 = y′′(π) = −c2 sin(π)− c3 cos(π) = c3

so c3 = −1. So, our solution must be

y(x) = −1− 2 cos(x)− sin(x).

10. September 22, 2022

A boundary value problem poses conditions at different points to get
a particular solution. For example, a system of equations like

y′′ + y = 0

y(a) = c

y(b) = d

is a boundary value problem. We will be focusing on initial value
conditions, like 

y′′ + y = 0

y(a) = c

y′(a) = d

rather than boundary value conditions in this course.
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The great news is that for a linear ODE, there exist unique solutions
to IVPs in the same sense we discussed for first-order equations with
the Picard-Lindelöf Theorem.

Theorem 10.1 (Existence and uniqueness theorem for linear IVPs).
Given a linear ODE

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = g(x)

where g(x), a0(x), . . . , an(x) are continuous and an(x) 6= 0 for all x,
then there exists a unique solution

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = g(x)

y(t0) = y0
y′(t0) = y1

...

y(n−1)(t0) = yn−1

on some interval containing t0.

Example 10.2. Consider the ODE

(x− 7)y′′ + 3y = x2 cos(x).

Since x − 7 = 0 when x = 7, the theorem doesn’t apply yet, so we
should divide through by x− 7:

y′′ +
3

x− 7
y =

x2 cos(x)

x− 7
.

The Theorem then says that when 3
x−7 and x2 cos(x)

x−7 are continuous,
there is a unique solution near that x-value: this is OK as long as
x 6= 7. For example, with the initial condition{

y(−1) = 3

y′(−1) = −.7

starting from x = −1, we know that there exists a unique solution
near x = −1. Moreover, we can go to the left forever and to the right
up until x = 7 without getting into trouble, so this IVP has a unique
solution on (−∞, 7).

Principle of superposition.

Example 10.3. Consider the linear homogeneous ODE

3y′′ + 2ty′ + t7y = 0.
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Suppose we have two solutions y1(t), y2(t). Then for any constants
c1, c2, the function

y(t) = c1y1(t) + c2y2(t)

is also a solution. (For example, things like −y1, 47y2, 3y1 − 5y2 are
solutions.) Let’s check it:

3y′′ + 2ty′ + t7y = 3(c1y1 + c2y2)
′′ + 2t(c1y1 + c2y2)

′ + t7(c1y1 + c2y2)

= 3(c1y
′′
1 + c2y

′′
2) + 2t(c1y

′
1 + c2y

′
2) + t7(c1y1 + c2y2)

= c1(3y
′′
1 + 2ty′1 + t7y1) + c2(3y

′′
2 + 2ty′2 + t7y2)

= c1( 0 ) + c2( 0 ) = 0,

where the last equality is because y1 and y2 are solutions; this means
that y is a solution!

For about the same reason, this works for any linear homogeneous
ODE: the key points were that we could “pull out the sum and con-
stants” form the differential equation, which is a consequence of having
a linear equation, and that a sum of constants times zero is zero, which
is why we needed a homogeneous equation. Namely, we have:

Theorem 10.4 (Principle of superposition for homogeneous ODEs).
For any linear homogeneous ODE

an(x)y(n) + · · ·+ a1(x)y′ + a0(x)y = 0,

given any solutions y1, y2, . . . , yt, and any constants c1, c2, . . . , ct, the
function y = c1y1 + · · ·+ ctyt is also a solution to the same equation.

This is only true for linear homogeneous equations, so be sure to
only apply it in that setting. We give the recipe that appears above a
name.

Definition 10.5. If y1, y2, . . . , yn are functions, we say that a function
of the form y = c1y1 + · · · + ctyt for some constants c1, c2, . . . , ct is a
linear combination or superposition of the functions y1, y2, . . . , yt.

Let’s return to our example and see what happens if the equation is
nonhomogeneous instead.

Example 10.6. Consider the linear nonhomogeneous ODE

3y′′ + 2ty′ + t7y = sin(t).

Suppose we have a solution y1(t) to this equation and we want to
get another one. Based on the homogeneous case, we might the try
something like y = c1y1 + c2y2 for some constants c1, c2 and some
other function y2. What changes? In the last line of computation of
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Example 10.3, the first and last zeroes should now be sin(x). The
c1 is going to mess things up, so we better hold off of it; the rest is
OK as long as we still the second 0. This means we are OK to take
y = y1 + c2y2 for a solution y2 of the homogeneous equation with the
same “left-hand side”!

Again, for about the same reason, this works for any linear ODE.
Namely, we have:

Theorem 10.7 (Principle of superposition for nonhomogeneous ODEs).
For any linear nonhomogeneous ODE

an(x)y(n) + · · ·+ a1(x)y′ + a0(x)y = g(x),

given one particular solution yp, and some solutions y1, . . . , yt of the
corresponding homogeneous equation

an(x)y(n) + · · ·+ a1(x)y′ + a0(x)y = 0,

and any constants c1, c2, . . . , ct, the function y = yp + c1y1 + · · · + ctyt
is also a solution to the first equation.

Discussion Questions. The functions ex and e2x are solutions to

y′′ − 3y′ + 2y = 0,

and −xex is a solution to

y′′ − 3y′ + 2y = ex.

Consider the following functions:

(a) y = 5ex

(b) y = ex − e2x
(c) y = 7xex

(d) y = 12ex − 3e2x

(e) y = −2ex − xex
(f) y = −2xex + 3e2x

(g) y = −xex + 9e2x

(h) y = 4e2x − xex + 15e2x

According to the superposition principle determine:

(1) Which of the functions are solutions to

y′′ − 3y′ + 2y = 0 ?

(2) Which of the functions are solutions to

y′′ − 3y′ + 2y = ex ?

(1) Since this is a linear homogeneous equation, we know that
any superpositions of our given solutions ex and e2x are also
solutions of the equation. This means (a), (b), and (d) are
solutions too.
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(2) Since this is a linear nonhomogeneous equation, we know
that our particular solution plus any superposition of our
homogeneous solutions is also a solution. This means (e),
(g), and (h) are solutions too.

The other functions (c) and (f) are not solutions to either!

11. October 4, 2022

Discussion Questions. Consider the differential equations

(♣) y′′ + sin(t)y′ + et
2

y = 0

(♦) y′′ + sin(t)y′ + ex
2

y = tan(t)

(1) What is the order of these equations? Are they linear? Are the
homogeneous?

Second order, linear, first is homogeneous, second is not.

(2) Say that we have solutions f(t) and g(t) to equation (♣), and a
solution h(y) to equation (♦). Which of the following definitely
are solutions to (♣)? Which definitely are solutions to (♦)?

(a) y = 2f
(b) y = 2h
(c) y = 3f − g

(d) y = f 2

(e) y = 0
(f) y = g + h

(g) y = tg
(h) y = h− 4f

2a, 2c, 2e are solutions to (♣) and 2f, 2h are solutions to (♦).

(3) What can you say about existence and uniqueness of the fol-
lowing initial value problems? Are they true on some interval?
If so, what’s the biggest such interval?
(a) 

y′′ + sin(t)y′ + et
2
y = 0

y(0.2) = 4

y′(0.2) = π

Exists and unique on (−∞,∞).
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(b) 
y′′ + sin(t)y′ + et

2
y = tan(t)

y(0.2) = 4

y′(−0.1) = π

Exists and unique on (−π/2, π/2).

(c) {
y′′ + sin(t)y′ + et

2
y = 0

y(0.3) = 7

Exists but not unique on (−∞,∞).

We are going to put the principle of superposition to use to write
general solutions of linear ODEs in terms of a few solutions. Namely,
for a homogeneous linear ODE, we will express the general solution as

y = C1y1 + · · ·+ Ctyt

for functions y1, . . . , yt (that we have to go find in each case). For a
nonhomogeneous linear ODE, we will express the general solution as

y = yp + C1y1 + · · ·+ Ctyt

where yp is any particular solution and C1y1 + · · ·+Ctyt is the general
solution to the associated homogeneous ODE.

We would like a way to figure out when we have found enough solu-
tions yi to make all of them by superposition. Before we can do it, we
need a way to say that an extra solution is new.

Linear dependence and Wronskians.

Example 11.1. Consider the ODE

y′′ − y = 0

(equivalently, y′′ = y). Certainly y1 = ex is a solution, since its deriv-
ative is itself. Can we guess another? y2 = e−x has its negative for its
derivative, and then the sign flips again with the second derivative, so
this is also a solution.

By the principle of superposition, 7ex and −15ex + πe−x are also
solutions. Note that something like xex is not a solution: the principle
only applies to constant multipliers.

Let’s recall a couple more functions:

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2
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are functions that satisfy sinh′(x) = cosh(x) and cosh′(x) = sinh(x), so
y3 = sinh(x) and y4 = cosh(x) are also solutions.

However, y3 = 1
2
y1− 1

2
y2 and y4 = 1

2
y1 + 1

2
y2 are already explained by

y1 and y2 using the principle of superposition, so we don’t really need y3
or y4 to create the other solutions. That is, using linear combinations,
{y1, y2} can be used to build everything that {y1, y2, y3, y4} can. Note
that we can also build everything using {y3, y4}.

The upshot is that {y1, y2, y3, y4} has redundancy for forming linear
combinations.

We want a tool for detecting redundancy like this.
In the last example, the equation

1

2
y1 +

1

2
y2 = y4

can be rewritten as
1

2
y1 +

1

2
y2 + 0y3 + (−1)y4 = 0.

Definition 11.2. We say that a set of functions {y1, . . . , yn} is linearly
independent (i.e., no redundancy) if whenever some linear combination
yields the zero function

c1y1 + · · ·+ cnyn = 0

the coefficients c1, . . . , cn must be 0. Otherwise {y1, . . . , yn} is linearly
dependent .

For example,

1

2
ex +

1

2
e−x + (−1) cosh(x) = 0

means that {ex, e−x, cosh(x)} is linearly dependent.
We now want a tool to detect linear (in)dependence of functions.

Here is Wronski’s clever idea: if c1f + c2g = 0 (as functions) then,
taking derivatives,

c1f
′ + c2g

′ = 0

also. Then

fg′ − f ′g = f(
−c1
c2

g′)− f ′(−c1
c2

g) = 0.

Definition 11.3. The determinant of a 2× 2 matrix[
a b
c d

]
is

det

[
a b
c d

]
= ad− bc.
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The determinant of a 3× 3 matrixa b c
d e f
g h i


is

det

a b c
d e f
g h i

 = = aei+ bfg+ cdh− ceg− afh− bdi.

Larger square matrices have determinants too, but we won’t discuss
them in this class. Do not attempt to generalize the formula for 3× 3
to n× n matrices; consult a linear algebra text instead.

12. October 6, 2022

Definition 12.1. The Wronskian of two functions f, g is the determi-
nant

W (f, g) = det

[
f g
f ′ g′

]
= fg′ − f ′g.

This is a function (of the same variable that f and g are functions of).
The Wronskian of three functions f, g, h is the determinant

W (f, g, h) = det

 f g h
f ′ g′ h′

f ′′ g′′ h′′

 .
In general, the Wronskian of n functions is the determinant of an n×n
matrix involving the first n− 1 derivatives of the functions.

For example,

W (x2, x3) = det

[
x2 x3

2x 3x2

]
= x2 · 3x2 − 2x · x3 = x4.

The point of Wronskians is the following:

Theorem 12.2. A set of function {f1, . . . , fn} (with at least n − 1
derivatives) is linearly dependent on an interval if and only if the Wron-
skian W (f1, . . . , fn) is the zero function on that interval.

Example 12.3. Let’s use Wronskians to show that the functions {x, ex}
are linearly independent on (−∞,∞). We have

W (x, ex) = det

[
x ex

1 ex

]
= xex − ex = (x− 1)ex

which is not the zero function, so the are linearly independent.
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Let’s try {1, x2, 4− x2} instead on (−∞,∞). We have

W (1, x2, 4− x2) = det

1 x2 4− x2
0 2x −2x
0 2 −2


= 1 · 2x · (−2) + x2 · (−2x) · 0 + (4− x2) · 0 · 2
− (4− x2) · 2x · 0− 1 · (−2x) · 2− x2 · 0 · −2 = 0,

so these are linearly dependent.

In fact, when we have a set of solutions to a homogeneous linear
ODE, something even better happens.

Fact 12.4. If f1, . . . , fn are n solutions of an nth order homogenous
linear equation on some interval, then

(1) f1, . . . , fn are linearly dependent on the interval ⇐⇒ if the
Wronskian function W (f1, . . . , fn) is always equal to zero on
the interval.

(2) f1, . . . , fn are linearly independent on the interval⇐⇒ the Wron-
skian function W (f1, . . . , fn) is never equal to zero on the in-
terval.

This means that we can check the Wronskian function at any single
point (of your choice!), and whether it’s zero or not determines whether
the solutions are independent or not.

Now we come to our key definition.

Definition 12.5. For an nth order homogeneous linear ODE, a fun-
damental set of solutions is a collection of n (same number!) linearly
independent solutions.

Theorem 12.6 (General solutions for linear ODEs).

(1) Given an nth order homogeneous linear ODE,

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = 0

there is a fundamental set of solutions y1, . . . , yn. Given such a
fundamental set, the general solution of the ODE is

y = C1y1 + · · ·+ Cnyn.

(2) Given an nth order nonhomogeneous linear ODE,

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = g(x),

and any particular solution yp, the general solution is

y = yp + C1y1 + · · ·+ Cnyn,
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where {y1, . . . , yn} is a fundamental set of solutions to the as-
sociated homogeneous equation.

Slogan 12.7. Given n solutions to an n-th order homogeneous linear
ODE, if their Wronskian is nonzero, then they form a fundamental set,
and the general solution is given by superposition.

Example 12.8. Consider the ODE

y′′ − 3y′ + 2y = 0.

We saw that y = ex and y = e2x are two solutions to this equation. We
want to use these to express the general solution. If we have two linearly
independent solutions, the general solution is given by superposition.
We check the Wronskian:

W (ex, e2x) = det

[
ex e2x

ex 2e2x

]
= ex(2e2x)− exe2x = e3x 6= 0,

so they are linearly independent. Thus the general solution is

y = C1e
x + C2e

2x.

Now we consider

y′′ − 3y′ + 2y = ex.

We saw earlier that y = −xex is a solution. Using what we just proved
about the homogeneous solution, we conclude that

y = −xex + C1e
x + C2e

2x

is the general solution to this nonhomogeneous equation.

Discussion Questions.

(1) We saw that ex and e−x are solutions of y′′ = y. Is {ex, e−x} a
fundamental set?

(2) Check that ex−1 is also a solution to y′′ = y. Is {ex, ex−1} a
fundamental set?

(3) What is the general solution to y′′ = y?
(4) We also saw that sinh(x), cosh(x) are solutions. Is {sinh(x), cosh(x)}

a fundamental set?

(1) Yes: W (ex, e−x) = −2 6= 0.
(2) No: W (ex, ex−1) = 0.
(3) y = C1e

x + C2e
−x.

(4) Yes: We can use the fact and check the Wronskian just at
x = 0: Using my calculator, sinh2(0)− cosh2(0) = −1.
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Note that we can write the general solution either as

C1e
x + C2e

−x

or as
C1 sinh(x) + C2 cosh(x)

and both are right: the collection of functions we can make by
either recipe is the same!

Reduction of order (§4.2). We know that for a homogeneous linear
ODE of order two, we are looking for two linearly independent solutions
to form a fundamental set. Before we start to discuss methods to find
solutions, we are going to discuss a method to get a second solution if
we already know one.

Here is the idea: Given

a2(x)y′′ + a1(x)y′ + a0(x) = 0

and one solution y1(x), we are going to look for a function that is a
nonconstant multiple of y1(x): y2(x) = u(x)y1(x). When we plug it in,
we can turn it into a first order ODE, which we already know how to
solve.

Example 12.9. Consider the second-order ODE

y′′ − 1

t
y′ +

1

t2
y = 0.

Out of nowhere, consider y1 = t. We have y′1 = 1, and y′′ = 0, so

0− 1

t
1 +

1

t2
t = 0

and this is a solution. Let’s use “reduction of order” to find another
solution. We know that we just need one more linearly independent
solution! We plug in y2 = uy1 = ut, where u is an unknown function
of t to be determined, as a guess. Plug in this y2 to the equation:

(ut)′′ − 1

t
(ut)′ +

1

t2
(ut) = 0.

(ut)′ = u′t+ u (ut)′′ = (u′t+ u)′ = u′′t+ u′ + u′ = u′′t+ 2u′.

 (u′′t+ 2u′)− 1

t
(u′t+ u) +

1

t2
(ut) = 0.

We are thinking of u as our variable, so we want to bring together the
different derivatives of u:

 tu′′ + u′ = 0.
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This is second order in u (darn!) but is first order in u′! To see it, set
v = u′ (so v′ = u′′):

tv′ + v = 0.

v′ +
1

t
v = 0.

We know how to solve this! Take the integrating factor µ = e
∫

1
t
dt =

eln t = t, so
(tv)′ = tv′ + v = 0

 tv = C  v = C/t.

Then remember v = u′, so

u′ = C/t  u = C ln t+ C ′.

And finally
y2 = (C ln(t) + C ′)t = Ct ln t+ C ′t

but since we are only looking for one solution, let’s just go with the
interesting part (C = 1, C ′ = 0):

y2 = t ln(t).

Let’s check that y1 and y2 are linearly independent:

W (t, t ln(t)) = det

[
t t ln(t)

(t)′ (t ln(t))′

]
= det

[
t t ln(t)
1 ln(t) + 1

]
= t(ln(t) + 1)− t(ln(t)) = t 6= 0,

so they are!
We conclude that t and t ln(t) form a fundamental set of solutions;

i.e., the general solution of the equation is

y = C1t+ C2t ln(t).

Slogan 12.10. Given a solution y1 of a second-order homogeneous
linear ODE, plug in y2 = uy1, and get a first-order homogeneous linear
ODE in terms of v = u′. Solve for v, then u, then plug in to get y2.

13. October 11, 2022

Homogeneous linear ODEs with constant coefficients (§4.3).
Now we are finally going to solve some higher order ODEs. We will fo-
cus on a very special class: homogenous linear equations with constant
coefficients. These look like

any
(n) + · · ·+ a1y

′ + a0y = 0,

with ai all constant.
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Let’s stick with order two to get started:

a2y
′′ + a1y

′ + a0y = 0.

If we write it like

a2y
′′ + a1y

′ = −a0y,
this equation says that combining the second derivative and first deriva-
tive give some constant multiple of y. This suggests a class of functions
to guess: for the exponential functions y = erx, the derivative is a con-
stant multiple of the original, and hence the second (and all the higher
ones) too. Let’s try to find a solution of the form y = erx; if we plug
in we get

y′ = rerx, y′′ = r2erx

 0 = a2r
2erx + a1re

rx + a0e
rx = (a2r

2 + a1r + a0)e
rx.

Since erx 6= 0, we have a solution if and only if r is a solution (in r) of

a2r
2 + a1r + a0 = 0.

This is called the auxiliary equation of our ODE.

Definition 13.1. The auxiliary equation of the ODE with constant
coefficients

any
(n) + · · ·+ a1y

′ + a0y = 0

is the polynomial equation

anr
n + · · ·+ a1r + a0r = 0.

The point is that y = erx is a solution of the ODE above if and only
if r is a solution of the auxiliary equation.

Example 13.2. For the equation

y′′ − 7y′ + 10y = 0,

we consider the auxiliary equation

r2 − 7r + 10 = 0

and find (by factoring, or quadratic equation) two roots

r1 = 2, r2 = 5.

Then we get two solutions

y1 = e2x, y2 = e5x.

We check that they are linearly independent:

W (e2x, e5x) = det

[
e2x e5x

2e2x 5e5x

]
= 3e7x 6= 0
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so indeed they are. We conclude that the general solution is

y = C1e
2x + C2e

5x.

More generally,

Fact 13.3. If r1 6= r2, then er1x and er2x are linearly independent. Even
better, if r1, r2, . . . , rt are distinct real numbers, then the functions
{er1x, er2x, . . . , ertx} are linearly independent.

If we can find n (=order many) distinct real solutions to auxiliary
polynomial equation, then we know that we can get a fundamental set
of solutions.

Example 13.4. For the equation

y′′ + 3y′ − 18y = 0,

we consider the auxiliary equation

r2 + 3r − 18 = 0

and factor
(r + 6)(r − 3) = 0

so
r = −6 or r = 3.

Then we get
y1 = e−6x, y2 = e3x.

These are two linearly independent solutions of an order two equation,
so they form a fundamental set, and the general solution is

y = C1e
−6x + C2e

3x.

Not every polynomial has distinct real roots. Two things can go
wrong: repeated roots (like m2 − 4m+ 4 = 0 with double root m = 2)
and complex roots (like m2 + 1 = 0 with roots m = ±i).

Constant coefficients, repeated roots. Let us consider an example
with repeated roots.

Example 13.5. Consider the ODE

y′′ − 4y′ + 4y = 0.

The auxiliary equation

m2 − 4m+ 4 = 0

factors as
(m− 2)2 = 0,
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which means m = 2 is a double root. We at least get y1 = e2x as a
solution. How can we get another? Reduction of order!

Set y2 = ue2x and plug in:

y′2 = u′e2x + u2e2x = (u′ + 2u)e2x

y′′2 = (u′ + 2u)′e2x + (u′ + 2u)2e2x = (u′′ + 4u′ + 4u)e2x

so plugging in we get

0 = (u′′ + 4u′ + 4u)e2x − 4(u′ + 2u)e2x + 4ue2x = u′′e2x.

(In a general reduction of order example, we would now set v = u′, v′ = u′′,
and get a first-order equation in v, but this equation is pretty simple.)
Since e2x 6= 0, we must have u′′ = 0, so u′ = C and u = Cx + C ′, so
y2 = (Cx+C ′)e2x. We only want one new solution, so let’s take C = 1
and C ′ = 0, so y2 = xe2x.

Let’s check they are linearly independent:

W (e2x, xe2x) = det

[
e2x xe2x

2e2x (2x+ 1)e2x

]
= e2x 6= 0.

Fact 13.6. If r1 is a double root of the auxiliary equation (meaning that
(r − r1)2 is a factor), then er1x and xer1x are two linearly independent
solutions. Similarly, if r1 is a triple root, then er1x, xer1x, x2er1x are
three linearly independent solutions, and so on. . .

Example 13.7. For the equation

y′′ + 6y′ + 9y = 0,

we consider the auxiliary equation

r2 + 6r + 9 = 0

and factor

(r + 3)2 = 0

so r = −3 is a double root. Then we get

y1 = e−3x, y2 = xe−3x.

These are two linearly independent solutions of an order two equation,
so they form a fundamental set, and the general solution is

y = C1e
−3x + C2xe

−3x.



50

Constant coefficients, complex roots. Some real polynomial equa-
tions like r2 + 4 = 0 have no real roots at all. Instead we find roots
within the complex numbers , which are numbers of the form a+bi with
a, b ∈ R, and i the imaginary number with i2 = −1. For example, the
quadratic polynomial equation r2 + 2r + 2 = 0 has two complex roots
r = −1 − i and r = −1 + i, which can be found using the quadratic
formula. Any real polynomial with a complex root a + bi also has its
complex conjugate a− bi as another root.

We are tempted to try e(−1−i)x as a solution, but we are only in-
terested in real functions. However, the idea can be redeemed. Let’s
experiment with eix to see if we can get something real out of it. First,
notice that the powers of i repeat themselves:

i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, i7 = −i, i8 = 1, . . .

Now think of ex as a power series:

ex = 1 +
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+
x8

8!
+ · · ·

and plug in ix in place of x:

eix = 1 +
i1x1

1!
+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+
i6x6

6!
+
i7x7

7!
+
i8x8

8!
+ · · ·

= 1 +
ix1

1!
− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
− x6

6!
− ix7

7!
+
x8

8!
+ · · ·

and collect the terms without i and the ones with i:

eix =

(
1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ · · ·

)
+ i

(
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
= cos(x) + i sin(x).

This is called Euler’s formula:

eix = cos(x) + i sin(x),

so eix is a complex superposition of cos(x) and sin(x)!
If r = a+ bi is a root, write

e(a+bi)x = eaxei·bx = eax(cos(bx) + i sin(bx)) = eax cos(bx) + ieax sin(bx)

and remember that a− bi is also a root:

e(a−bi)x = eaxei·−bx = eax(cos(−bx)+i sin(−bx)) = eax cos(bx)−ieax sin(bx)

so, taking complex superpositions (1/2 times sum, 1/2i times differ-
ence) we can make the very real functions eax cos(bx), eax sin(bx).

This motivates the following:
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Fact 13.8. If r1, r2 = a±bi are complex roots of the auxiliary equation,
then y1 = eax cos(bx), y2 = eax sin(bx) are two linearly independent
solutions.

Example 13.9. For the equation

y′′ + 2y′ + 2y = 0,

we consider the auxiliary equation

r2 + 2r + 2 = 0.

Using the quadratic equation,

r =
−2±

√
(−2)2 − 4 · 1 · 2

2
=
−2±

√
−4

2
= −1± i

are complex roots. Thus, we have solutions

y1 = e−x cos(x), y2 = e−x sin(x),

which form a fundamental set, so

y = C1e
−x cos(x) + C2e

−x sin(x)

is the general solution.

Slogan 13.10. For a constant coefficient homogeneous linear ODE,
find the roots of the auxiliary equation. Real roots r give solutions erx,
complex pairs a ± bi give solutions eax cos(bx), eax sin(bx), and every
repeat root gets a multiple by x.

Discussion Questions.

(1) If a is a number, what is the general solution to

y′′ − a2y = 0 ?

(2) If a is a number, what is the general solution to

y′′ + a2y = 0 ?

(1) y = C1e
ax + C2e

−ax

(2) y = C1 cos(ax) + C2 sin(ax)
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14. October 13, 2022

Example 14.1. The techniques we discussed last time work just as
well for equations of order greater than two. Take

y(4) + 6y′′ + 9y = 0.

The auxiliary equation is

r4 + 6r2 + 9 = 0,

 (r2)2 + 6(r2) + 9 = 0,

 (r2 + 3)2 = 0,

 (r −
√

3i)2(r +
√

3i)2 = 0.

So r =
√

3i and r = −
√

3i are both double roots. Thus, we have
solutions y1 = cos(

√
3x), y2 = sin(

√
3x), and multiply by x for repeats:

y3 = x cos(
√

3x), y4 = x sin(
√

3x) as a fundamental set of solutions.
Or, take

y′′′ + 3y′′ + 3y′ + y = 0.

The auxiliary equation is

r3 + 3r2 + 3r + 1 = 0,

 (r + 1)3 = 0,

so r = −1 is a triple root. Then a fundamental set is {e−x, xe−x, x2e−x}.

Method of undetermined coefficients (§4.4). Now we consider a
technique to solve nonhomogeneous linear ODEs with constant coeffi-
cients. For example,

y′′ − 5y′ + 6y = e5x

is a nonhomogeneous linear ODEs with constant coefficients. We know
that the general solution of a nonhomogeneous equation is given by
taking the homogeneous solution and adding in one particular solution
of the nonhomogeneous equation, so after we solve the homogeneous
equation (which we know how to do) we are just looking for one partic-
ular solution! (As a bit of terminology, when solving a nonhomogenous
equation, the general solution to the homogeneous solution is some-
times called the complementary solution, and one sometimes writes
the general solution for the nonhomogeneous case as y = yp+yc, where
yc stands for the complementary solution and yp is any particular so-
lution.)

The technique we will use will be limited to right-hand sides with

• constant and polynomial functions,
• exponential functions,
• sine and cosine functions,
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or simple combinations of them. Our idea is to guess a general form for
a possible “trial solution” with “undetermined coefficients” and then
plug it in to find the coefficients. How to guess the form of a trial
solution? If we’re going to get from

a0y + a1y
′ + a2y

′′

to the target function g, then a simple first guess, just ignoring the
derivatives, is to try some constant times g. Then we have derivatives
of g left over, so why not add in a constant times the derivative, and
so on. Our general trial solutions will be look like superpositions of
functions like g and their derivatives.

Example 14.2. Consider the ODE

y′′ + 3y′ − 10y = x2 − 3x+ 5.

First we find the general solution of the associated homogeneous equa-
tion by looking at the auxiliary polynomial

r2 + 3r − 10 = 0

(r + 5)(r − 2) = 0

so r = 2 or r = −5, so y = C1e
2x+C2e

−5x is the homogeneous solution.
To get one particular solution, we need something to plug into the
LHS to get a polynomial on the RHS. Something whose derivatives are
polynomials would be a good guess. Let’s guess a polynomial of degree
two,

yp = Ax2 +Bx+ C

as a trial solution. We have

y′p = 2Ax+B, y′′p = 2A

and plugging in we get

2A+ 3(2Ax+B)− 10(Ax2 +Bx+ C) = x2 − 3x+ 5

 −10Ax2 + (6A− 10B)x+ (2A+ 3B − 10C) = x2 − 3x+ 5

 A =
−1

10
, B =

−6

25
, C =

48

5
,

so we have yp = x2 − 9x+ 52. Thus, the general solution is

y =
−1

10
x2 − 6

25
x+

48

5
+ C1e

2x + C2e
−5x.
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15. October 20, 2022

Example 15.1. Consider the ODE

y′′ − 2y′ + 5y = e5x.

The homogeneous solution is

yc = C1e
x cos(2x) + C2e

x sin(2x).

What could we use as a “trial solution” to spit out e5x from the left
hand side? Our philosophy last time was to consider functions that
look like the target function and its derivatives. Since the derivatives
of e5x are just constant multiples of e5x, a multiple of e5x seems worthy
of a try. We take a trial solution

yp = Ae5x

so

y′p = 5Ae5x, y′′p = 25Ae5x

e5x = 25Ae5x − 2(5Ae5x) + 5(Ae5x) = 20Ae5x,

so A = 1
20

, and the general solution is

y =
1

20
e5x + C1e

x cos(2x) + C2e
x sin(2x).

Example 15.2. Consider the ODE

y′′ + 3y′ + 2y = sin(4x).

First we find the homogeneous solution

yc = C1e
−x + C2e

−2x.

To get a trial solution particular solution, we may want to tryA cos(4x),
but since a mutliple of sin(4x) appears when we take derivatives of
cos(4x), it will be important to include it to. That is, the “trial solu-
tion” we try is

yp = A sin(4x) +B cos(4x).

Then we get

y′p = 4A cos(4x)− 4B sin(4x), y′′p = −16A sin(4x)− 16B cos(4x),

so

sin(4x) = (−16A sin(4x)− 16B cos(4x)) + 3(4A cos(4x)− 4B sin(4x))

+ 2(A sin(4x) +B cos(4x))

= (−14A− 12B) sin(4x) + (12A− 14B) cos(4x)
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so {
−14A− 12B = 1

12A− 14B = 0

which we solve to get A = −7
170

, B = −3
85

, so

yp =
−7

170
sin(4x) +

−3

85
cos(4x)

is a particular solution, and hence

y =
−7

170
sin(4x) +

−3

85
cos(4x) + C1e

−x + C2e
−2x

is the general solution.

Let us recap our basic trial solutions:

• For target function a polynomial of degree k: a polynomial of
degree k with mystery coefficients.
• For target function erx: Aerx.
• For target function sin(kx) or cos(kx): A sin(kx) +B cos(kx).

The basic pieces are the functions we can get by repeated differentiation
of our target function.

We can also get to more complicated target functions made out of
these basic pieces. The rule is: the trial solution for a product of two of
these things comes from multiplying the pieces of their trial solutions.

Example 15.3. Consider the ODE

y′′ − 2y′ + 5y = 3xe5x.

The homogeneous solution is

yc = C1e
x cos(2x) + C2e

x sin(2x).

The trial solution for e5x is Ae5x; the trial solution for 3x is Ax + B.
For the product, we multiply the basic pieces, i.e., take the products
of functions in {e5x} with functions in {x, 1}:

yp = Axe5x +Be5x.

Example 15.4. Consider the ODE

y′′ − 2y′ + 5y = 3x cos(3x).

The homogeneous solution is

yc = C1e
x cos(2x) + C2e

x sin(2x).
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The trial solution for 3x is Ax + B; the trial solution for cos(3x) is
A cos(3x) + B sin(3x). For the product, we multiply the basic pieces,
i.e., take the products of functions in {x, 1} with functions in {cos(3x), sin(3x)}:

yp = Ax cos(3x) +B cos(3x) + Cx sin(3x) +D sin(3x).

There is one very important special case when we have to update
our trial solution: if part of our basic trial solution is part of our
homogeneous solution, then we might not be able to get to our target
function.

Example 15.5. Consider the ODE

y′′ − 7y′ + 10y = e5x.

The homogeneous solution is

C1e
2x + C2e

5x

and our trial solution would be

yp = Ae5x.

But, this is part of the homogeneous solution, so when we plug it in, we
get zero; we can never choose an A that makes the LHS equal to e5x.
So our usual method of trial solutions failed!

We now take inspiration from the homogeneous case, when there
were “not enough solutions”: multiply by x!

Our improved “trial solution” is

yp = Axe5x.

Let us try:

y′p = Ae5x + 5Axe5x = A(5x+ 1)e5x

y′′p = A5e5x + A(5x+ 1)5e5x = A(25x+ 10)e5x

so

e5x = A(25x+ 10)e5x − 7A(5x+ 1)e5x + 10Axe5x = 3Ae5x

and A = 1
3
, so

yp =
1

3
xe5x,

and so the general solution is

y =
1

3
xe5x + C1e

2x + C2e
5x.
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Example 15.6. For the differential equation

y′′ + 9y = 4 cos(3x),

the complementary solution is

yc = C1 cos(3x) + C2 cos(3x).

The basic trial solution for our target function would be

A cos(3x) +B sin(3x),

but these are part of the homogeneous solution. Instead we take

yp = Ax cos(3x) +Bx sin(3x).

Plugging in, we get A = 2
3

and B = 0, so the general solution is

y =
2

3
x cos(3x) + C1 cos(3x) + C2 cos(3x).

Slogan 15.7. • Basic trial solutions for simple targets are mys-
tery combinations of functions of the same type of the target
and its derivatives.
• Basic trial solutions for products of simple targets are mystery

combinations of the corresponding pieces for the simple pieces.
• When part of the basic trial solution is repeated in the comple-

mentary solution, multiply by the independent variable until it
isn’t.

16. October 25, 2022

On July 1, 1940, a bridge spanning the Tacoma Narrows opened to
great celebration. It dramatically shortened the trip from Seattle to
the Kitsap Peninsula. It was an elegant suspension bridge, a mile long
(third longest in the US at the time) but just 39 feet across. Through
the summer and early fall, drivers noticed that it tended to oscillate
vertically, quite dramatically.

During the first fall storm, on November 7, 1940, with steady winds
above 40 mph, the bridge began to exhibit different behavior. It
twisted, part of one edge rising while the opposing edge fell, and then
the reverse. At 10:00 AM the bridge was closed. The torsional oscil-
lations continued to grow in amplitude, until, at just after 11:00, the
central span of the bridge collapsed and fell into the water below. One
car was lost.

Why did this collapse occur? Were the earlier oscillations a warning
sign? Many differential equations textbooks announce that this is an
example of resonance: the gusts of wind just happened to match the
natural frequency of the bridge.
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Models: Let the vertical deflection (positive direction downward) of
the slice of the roadbed denoted by y(t), where t represents time, and
y = 0 represents the equilibrium position of the road.

(1) Here are three simplified second order differential equations that
model the situations of the Tacoma Bridge. Assume that at the
initial time, the displacement of the bridge y(0) = 0, and the
velocity of the bridge y′(0) = 0.1, so that the roadbed starts in
the equilibrium position with a small downward velocity. For
each of the following equations, find the solution to the IVP
with these initial conditions. Graph the solutions, and describe
the short-term and long-term behavior of the solutions.

(a) Without force.
d2y

dt2
+ 4y = 0.

(b) With periodic forcing.
d2y

dt2
+ 4y = cos(t).

(c) In resonance.
d2y

dt2
+ 4y = cos(2t).

(a) To solve an IVP, we find the general solution, then use
the initial conditions. This is a homogeneous linear ODE
with constant coefficients. The auxiliary polynomial is

r2 + 4 = 0

with roots r = ±2i, so the general solution is

y = C1 cos(2t) + C2 sin(2t).

We plug in the initial conditions:

0 = y(0) = C1 cos(2t) + C2 sin(2t) = C1

.1 = y′(0) = −2C1 sin(2t) + 2C2 cos(2t) = 2C2  C2 = .05

y = .05 sin(2t).

This oscillates with the same frequency and same ampli-
tude forever.
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(b) To solve this IVP, again we find the general solution,
then use the initial conditions. This a a nonhomogeneous
linear ODE with constant coefficients. First we find the
complementary solution, which is just what we did in part
(a):

y = C1 cos(2t) + C2 sin(2t).

Make sure you are using the general complementary solution
and not the previous IVP solution here. Now we choose a
“trial solution”: for a target of cos(t), we take a mystery
superposition of cos(t) and sin(t):

yp = A cos(t) +B sin(t)

and plug in

y′p = −A sin(t) +B cos(t), y′′p = −A cos(t)−B sin(t)

 (−A cos(t)−B sin(t)) + 4(A cos(t) +B sin(t)) = cos(t)

 3A cos(t) + 3B sin(t) = cos(t)

 A =
1

3
, B = 0

yp =
1

3
cos(t).

The general solution is then

y =
1

3
cos(t) + C1 cos(2t) + C2 sin(2t).

Only now do we use the initial conditions:

0 = y(0) =
1

3
+ C1  C1 = −1

3

.1 = y′(0) = 0 + 0 + 2C2  C2 = .05

y =
1

3
cos(t)− 1

3
cos(2t) + .05 sin(2t).

This oscillates with a larger amplitude than last time, but
still bounded.

(c) We follow the same outline. The first thing that
changes is our trial solution: we cannot take

yp = A cos(2t) +B sin(2t)

as a “trial solution” since these are homogeneous solutions!
We fix them by multiplying by t:

yp = At cos(2t) +Bt sin(2t).



60

We follow the same process: plug in the trial solution to the
equation to find A and B. We get

yp =
1

4
t sin(2t)

and

y =
1

4
t sin(2t) + C1 cos(2t) + C2 sin(2t)

as the general solution. Then we plug in the initial condi-
tions to solve for C1 and C2 and we get

y =
1

4
t sin(2t) + .05 sin(2t).

This oscillates with larger and larger waves, without
bound! Here are the graphs.

(2) Perfect coincidences are rare in nature: it’s very unlikely for
the wind frequency to exactly equal the natural frequency of
the bridge.
(a) Before solving, what do you expect to happen to the solu-

tion of the IVP with same initial conditions and equation
d2y

dt2
+ 4y = cos(1.9t)?

(b) Graph the solution to the IVP described in the last part,
and describe the short-term and long-term behavior of the
solutions.

(c) Repeat the last two questions for
d2y

dt2
+ 4y = cos(1.99t).

(d) What happens in the limit with the same IVP with
d2y

dt2
+

4y = cos(αt) as α→ 2?

Summary: In general for
d2y

dt2
+ 4y = cos(αt) with the

same initial condition, we have solution

y =
1

4− α2
(cos(αt)− cos(2t)) + .05 sin(2t).

If α is very close to 2, the fraction 1
4−α2 is large, and, for a

while at least, αt is close to 2t. For small values of t, αt is
close to 2t, so cos(αt)−cos(2t) is small, but as t gets larger,
this can get large again, but then small again, and so on.

https://www.geogebra.org/m/bzsn4mmd
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So, we get waves that get larger for a while, then smaller
again, and so on.

Here are the graphs again.

17. October 27, 2022

17.1. Spring and mass systems (§5.1). Given an object on a spring,
its motion is determined by Hooke’s law, which says that the force from
the spring is proportional to the displacement of the spring from its
resting length, but in the opposite direction. Combined with Newton’s
second law (force = mass × acceleration), we can get an equation that
governs the total force applied by the spring. First we name variables:
x is the displacement of the mass on the spring from resting position,
t is time, m is the mass. We also need some constant of propotionality
k. We can then write an equation:

mx′′ = −kx, (m, k > 0)

or

mx′′ + kx = 0, (m, k > 0).

This a homogeneous linear ODE with constant coefficients, so we find
the roots of the auxiliary polynomial

mr2 + k = 0, r = ±i
√
k

m
.

The general solution is then

x = C1 cos(γx) + C2 sin(γx),

for γ =
√

k
m

, so these solutions are all periodic functions of fixed wave-

length 2π
γ

.

However, there is generally some sort of friction or resistance to the
system. We add a friction force in the opposite direction to the spring
force:

mx′′ = −βx′ − kx, (m,β, k > 0)

or

mx′′ + βx′ + kx = 0, (m,β, k > 0).

The βx′ term gives a damping effect to the system.
The behavior of the system is determined by the roots of the auxiliary

polynomial:

mr2 + βr + k = 0

https://www.geogebra.org/m/bzsn4mmd
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 r1, r2 =
−β ±

√
β2 − 4mk

2m

The behavior breaks into three cases:

(1) If β2−4mk > 0, then the roots r1, r2 are real. Since m,β, k > 0,

√
β2 − 4mk <

√
β2 = β,

−β +
√
β2 − 4mk < 0 (and also − β +

√
β2 − 4mk < 0),

so both roots are negative. The general solution is of the form
x = C1e

r1t + C2e
r2t. Then there are no oscillations, and the

spring heads to its resting position. A system like this is called
overdamped.

(2) If β2 − 4mk < 0, then the roots r1, r2 are complex. The
real part is −β

2m
, which is negative, and the imaginary part is

1
2m

√
β2 − 4mk = 1

2m

√
−1(4mk − β2) = iγ for γ = 1

m

√
4mk − β2.

The general solution is of the form

x = C1e
−βt/2m cos(γt) + C2e

−βt/2m sin(γt).

These solutions oscillate with wavelength 2π
γ

, and with decreas-

ing amplitude e−βt/2m. A system like this is called underdamped.
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(3) If β2 − 4mk = 0, then there is a repeated real root r, which
again is negative. The general solution is of the form x =
C1e

rt + C2te
rt. A system like this is called critically damped,

since a small change will make it overdamped or underdamped.

Finally, let’s take one example of what can happen if we apply an
additional force to our spring system.

Example 17.1. Consider the initial value problem
x′′ + 2x = cos(αt)

x(0) = 0

x′(0) = 0
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for some constant α. This corresponds to a mass-spring system with
no damping, plus an additional oscillating force with wavelength 2π

α
.

r2 + 2 = 0 r = ±i
√

2,

so the homogeneous general solution is

xc = C1 cos(
√

2t) + C2 sin(
√

2t).

If α 6=
√

2, then the “trial solution” is

xp = A cos(αt) +B sin(αt),

and after subbing and solving, we get the solution to the IVP

x(t) =
1

2− α2

(
cos(αt)− cos(

√
2t)
)
.

For α = 1, 2, 1.3, we have

In particular, all of these solutions are bounded, and somewhat repeat-
ing.

What about α =
√

2? Then our first guess for the “trial solution” is
again

xp = A cos(αt) +B sin(αt),

but this is part of the complementary solution! We multiply by t to
correct it:

xp = At cos(
√

2t) +Bt sin(
√

2t),

and after subbing and solving, we get the general solution

x =
1

2
√

2
t sin(

√
2t) + C1 cos(

√
2t) + C2 sin(

√
2t),

and IVP solution

x =
1

2
√

2
t sin(

√
2t).
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The solution gets larger and larger and larger! This is an example
of resonance.

Laplace Transforms (§7.1). Our next big topic is a general method
to translate differential equations to simpler algebraic equations (which
are then easier to solve). Here is the basic idea. To a function f(t), we
will associate another function L{f(t)} called its Laplace transform,
which is a function of another variable s. We will think of the Laplace
transform of f as another function that is its evil twin. We might
write something like F (s) = L{f(t)}(s) to say that the function F
with input variable s is the Laplace transform of the function f whose
input variable is t; the L is telling us the function F we are specifying
is the Laplace transform of f . The upshot is that derivatives in regular
world will correspond to multiplication by s in Laplace transform (evil
twin) world.

18. November 1, 2022

Definition 18.1. Let f(t) be a function defined for all t ≥ 0. The
Laplace transform is the function L{f(t)} is the function of s given by
the rule

L{f(t)}(s) =

∫ ∞
0

e−stf(t) dt,

provided this interval converges.

This is a function of s, because for every different value of s we
choose, we get a different integral from 0 to ∞, which is a number
(as long as it converges). Sometimes we’ll write F (s) as shorthand for
L{f(t)}(s) just to make it easier to work with.
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Example 18.2. Let’s compute L{1} from the definition:

L{1}(s) =

∫ ∞
0

e−st · 1 dt =

[
−1

s
e−st

]∞
0

= lim
t→∞

−1

s
e−st −

(
−1

s

)
For s > 0, the limit limt→∞

−1
s
e−st is zero, while for s ≤ 0, the limit

limt→∞
−1
s
e−st does not exist. We conclude that

L{1}(s) =
1

s

on the domain s > 0.

Example 18.3. Let’s compute L{e5t} from the definition, for some
real number r 6= 0:

L{e5t}(s) =

∫ ∞
0

e−st · e5t dt =

∫ ∞
0

e(5−s)t dt =

[
1

5− s
e(5−s)t

]∞
0

= lim
t→∞

1

5− s
e(5−s)t −

(
1

5− s

)
=
−1

5− s
=

1

s− 5
,

for s > 5.
By basically the same computation, L{eat} = 1

s−a for any real num-
ber a 6= 0 on the domain s > a.

With slightly more annoying integration, we can obtain the following
table:

function f(t) Laplace L{f(t)}(s)

1
1

s
(s > 0)

tn
n!

sn+1
(s > 0)

eat
1

s− a
(s > a)

sin(kt)
k

s2 + k2
(s > 0)

cos(kt)
s

s2 + k2
(s > 0)

We will take these as the building blocks. We can also take Laplace
transforms of superpositions of functions whose Laplace transforms we
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already know: If f1(t) and f2(t) are functions whose Laplace transforms
we know, and c1, c2 are constants, then

L{c1f1(t) + c2f2(t)}(s) =

∫ ∞
0

e−st(c1f1(t) + c2f2(t)) dt

=

∫ ∞
0

c1e
−stf1(t) + c2e

−stf2(t)) dt

= c1

∫ ∞
0

e−stf1(t) dt+ c2

∫ ∞
0

e−stf2(t)) dt

= c1L{f1(t)}(s) + c2L{f2(t)}(s)

That is, Laplace transforms satisfy the same “sum rule” and “con-
stant rule” that integrals satisfy.

Discussion Questions.

(1) Find the Laplace Transforms F (s) of the following functions:
(a) f(t) = 3e7t.
(b) f(t) = −4t2 + 7t.
(c) f(t) =

√
2 cos(3t) +

√
5 sin(7t).

(2) Find functions f(t) whose Laplace Transforms are the following
functions:

(a) F (s) =
2

s3
.

(b) F (s) =
8

s3
.

(c) F (s) =
2

s− 3
− 7

s+ 1
.

(1) (a) F (s) =
3

s− 7
.

(b) F (s) = −4
2!

s3
+ 7

1!

s2
=

7s− 8

s3
.

(c) F (s) =
√

2
s

s2 + 9
+
√

5
7

s2 + 49
.

(2) (a) f(t) = t2.
(b) f(t) = 4t2.
(c) f(t) = 2e3t − 7e−t.

Definition 18.4. The inverse Laplace transform of a function F (s) is
the function f(t) whose Laplace transform is F (s). We write L−1{F (s)}
for the inverse Laplace transform of F (s).

Thus, f(t) = L−1{F (s)} ⇔ F (s) = L{f(t)}.
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To compute inverse Laplace transforms, we can read our table of
Laplace transforms from right to left and use the fact that the inverse
Laplace transform behaves well with superpositions.

19. November 3, 2022

It is not clear that these indefinite integrals should always converge.
They don’t always!

Example 19.1. The function f(t) = et
2

does not have a Laplace trans-
form:

L{et2}(s) =

∫ ∞
0

e−st · et2 dt =

∫ s

0

et
2−st dt+

∫ ∞
s

et
2−st dt,

which diverges since for t ≥ s , t2 − st ≥ 0 and hence et
2−st ≥ 1.

However:

Fact 19.2. Given a piecewise continuous function f(t), if there is some
exponential function eat such that f(t) ≤ eat for all sufficiently large
values of t, then f has a Laplace transform, meaning that the inte-
grals involved in computing the Laplace transforms converge for all
sufficiently large s.

Now we discuss the main point behind Laplace transforms. Let’s
take a function f(t) and its derivative f ′(t) and compute the Laplace
transform of the derivative. By the definition:

L{f ′(t)} =

∫ ∞
0

f ′(t)e−st dt

To compute this, we apply integration by parts:

u = e−st, du = −se−st dt, dv = f ′(t) dt, v = f(t)

 
∫ ∞
0

f ′(t)e−st dt =
[
f(t)e−st

]∞
t=0
− (−s)

∫ ∞
0

f(t)e−st dt

 L{f ′(t)}(s) = (0− f(0)) + sL{f(t)}(s) = sL{f(t)}(s)− f(0).

In shorthand if we put F (s) for L{f(t)}(s), this reads

L{f ′(t)}(s) = sF (s)− f(0).

What’s the point of this calculation? Derivatives in the regular world
translate into multiplication by s in Laplace transformation world!
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If we repeat this calculation, we get

L{f ′′(t)}(s) = sL{f ′(t)}(s)− f ′(0)

= s(L{f(t)}(s)− f(0))− f ′(0)

= s2L{f(t)}(s)− sf(0)− f ′(0)

and in general

L{f (n)(t)}(s) = snL{f(t)}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

We can use Laplace transforms to transform initial value problems
into algebraic equations.

Example 19.3. Consider the IVP{
y′ − 2y = 0

y(0) = 5
.

Let’s apply Laplace transforms to both sides:

L{y′ − 2y} = L{0}

 L{y′} − 2L{y} = 0

For convenience we will use Y (= Y (s)) for L{y}.

 (sY − y(0))− 2Y = 0

 (sY − 5)− 2Y = 0

 (s− 2)Y = 5

 Y =
5

s− 2

Then we translate back to actual functions with the inverse Laplace
transform:

 y = L−1{ 5

s− 2
} = 5L−1{ 1

s− 2
} = 5e2t.

We will often get fraction equations when applying this method, so
we might need to apply partial fractions.
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Quick review of partial fractions. Given a rational function p(x)
q(x)

with deg(p) < deg(q), we can often use partial fractions to write this
as a sum of fractions with simpler denominators.

• When q(x) = L1L2 has two distinct linear factors, we write

p(x)

q(x)
=

A

L1

+
B

L2

.

Then clear denominators and solve for A and B:

p(x) = AL2 +BL1.

We can either just make a constant coefficient equation and an
x-coefficient equation and solve that system for A and B, or we
can be more clever and plug in x = root of L1 and x = root of
L2 to get simple equations.

For example,

5x+ 4

x(x− 2)
=
A

x
+

B

x− 2

 5x+ 4 = A(x− 2) +Bx.

Let’s be clever: plug in x = 0

 4 = 5 · 0 + 4 = A(0− 2) +B · 0 = −2A A = −2

and x = 2

 14 = 5 · 2 + 4 = A(2− 2) +B · 2 = 2B  B = 7

so
5x+ 4

x(x− 2)
=
−2

x
+

7

x− 2
.

• When q(x) = L1Q1 has a linear and an irreducible quadratic
factor, we write

p(x)

q(x)
=

A

L1

+
Bx+ C

Q1

.

Then clear denominators and solve for A,B, and C:

p(x) = AQ1 + (Bx+ C)L1.

We can either just make a system of equations for the 1, x, x2-
coefficients, or we can be more clever and plug in x = root of
L1 to get started.

For example,

1

(x− 1)(x2 + 9)
=

A

x− 1
+
Bx+ C

x2 + 9

 1 = A(x2 + 9) + (Bx+ C)(x− 1).
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To be clever, plug in x = 1 to get

1 = A(12 + 9) + (B · · · 1 + C)(1− 1) = 10A A =
1

10
.

Then

1 =
1

10
(x2 + 9) + (Bx+C)(x−1) = (

1

10
+B)x2 + (C−B)x+ (

9

10
−C)

so C − B = 0 so B = C, and B + 1
10

= 0, so B = C = − 1
10

.
Thus,

1

(x− 1)(x2 + 9)
=

1
10

x− 1
−

1
10
x+ 1

10

x2 + 9
.

• When q(x) = L2
1 has a double linear factor, we write

p(x)

q(x)
=

A

L1

+
B

L2
1

.

Again clear denominators to get

p(x) = AL1 +B

and solve for A,B. You can plug in the root of L1 for x to get
B if you want to be clever.

Solving IVPs with Laplace transforms.

Example 19.4. Consider the IVP{
y′ − 2y = 4

y(0) = 5
.

Let’s apply Laplace transforms to both sides:

L{y′ − 2y} = L{4}

 L{y′} − 2L{y} =
4

s
For convenience we will again use Y (= Y (s)) for L{y}.

 (sY − y(0))− 2Y =
4

s

 (sY − 5)− 2Y =
4

s

 (s− 2)Y = 5 +
4

s
=

5s+ 4

s

 Y =
5s+ 4

s(s− 2)
.
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To prepare for computing the inverse Laplace transform, we use par-
tial fractions. We did this example above!

5s+ 4

s(s− 2)
=
−2

s
+

7

s− 2
.

Then we translate back to actual functions with the inverse Laplace
transform:

 y = L−1{−2

s
+

7

s− 2
} = −2L−1{1

s
}+ 7L−1{ 1

s− 2
} = −2 + 7e2t.

Example 19.5. Consider the IVP
y′′ + 9y = et

y(0) = 0

y′(0) = 0

.

Let’s apply Laplace transforms to both sides:

L{y′′ + 9y = et} = L{et}

 L{y′′}+ 9L{y} =
1

s− 1

For convenience we will again use Y (= Y (s)) for L{y}.

 (s2Y − sy(0)− y′(0)) + 9Y =
1

s− 1

 (s2 + 9)Y =
1

s− 1

 Y =
1

(s− 1)(s2 + 9)

To prepare for computing the inverse Laplace transform, we use par-
tial fractions. We did this example above!

1

(s− 1)(s2 + 9)
=

1
10

s− 1
−

1
10
x+ 1

10

s2 + 9
.

Then we translate back to actual functions with the inverse Laplace
transform:

y = L−1{
1
10

s− 1
−

1
10
s+ 1

10

s2 + 9
}

=
1

10
L−1{ 1

s− 1
} − 1

10
L−1{ s

s2 + 9
} − 1

30
L−1{ 3

s2 + 9
}

=
1

10
et − 1

10
cos(3t)− 1

30
sin(3t).
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20. November 15, 2022

Translation theorems for Laplace transforms (§7.3). Recall that
if g(x) is a function, then g(x − a) is the function you get by shifting
the graph to the right by a (if a is positive; to the left by |a| if a is
negative); we sometimes call this function a translation of g. Following
the webwork, we might use notation like g|x−a for this sometimes.

Translating a Laplace transform has a nice formula:

Theorem 20.1. If L{f(t)} = F (s) then

L{eatf(t)} = F (s− a).

We can also write this as L{eatf(t)} = F |s−a. This is easy to check:

L{eatf(t)}(s) =

∫ ∞
0

e−steatf(t) dt =

∫ ∞
0

e−(s−a)tf(t) dt = F (s− a).

For a simple example, the theorem says that

L{e5t sin(6t)} = L{sin(6t)}|s−5 =
6

(s− 5)2 + 36
.

The theorem is especially useful in computing inverse Laplace trans-
forms. We can rewrite the formula above as:

L−1{F (s− a)} = eatL−1{F (s)}
or

L−1{F |s−a} = eatL−1{F}.
Thus, if our function looks like, or can be made to look like, a function
of s − a for some constant a, then the formula helps us compute the
inverse transform.

Slogan 20.2. Laplace transform turns multiplying by an exponential
into a shift; inverse Laplace transform turns a shift into multiplying by
an exponential.

Example 20.3. To compute the inverse Laplace transform of F (s) =
5

(s+ 3)2
, first we realize this function as

5

s3
|s+2. Then

L−1{F (s)} = L−1{ 5

s3
|s+2} = e−2tL−1{ 5

s3
} =

5

2
e−2tL−1{ 2

s3
} =

5

2
t2.

We can also compute inverse Laplace transforms of irreducible quadrat-
ics using this theorem and completing the square. Recall that complet-
ing the square is an algebraic technique to rewrite quadratic polyno-
mials: to rewrite x2 + bx+ c, we split b in half and write

x2 + bx+ c = (x+
b

2
)2 + d
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and solve for d. For example,

x2 + 4x+ 7 = (x+ 2)2 + d = (x2 + 4x+ 4) + d d = 3

 x2 + 4x+ 7 = (x+ 2)2 + 3.

Example 20.4. Let’s compute the inverse Laplace transform of

F (s) =
s− 7

s2 + 6s+ 13
.

First we apply completing the square to the bottom:

s2 + 6s+ 13 = (s+ 3)2 + d = s2 + 6s+ 9 + d d = 4

 s2 + 6s+ 10 = (s+ 3)2 + 4,

so

F (s) =
2s− 7

(s+ 3)2 + 4
.

Now, the denominator suggests that we would like to think of this as a
function of s+ 3. To make the numerator look like a function of s+ 3,
we can rewrite s = (s+ 3)− 3.

2s− 7 = 2(s+ 3− 3)− 7 = 2(s+ 3)− 6− 7 = 2(s− 3)− 13,

so

F (s) =
2(s+ 3)− 13

(s+ 3)2 + 4
=

2s− 13

s2 + 4
|s+3.

Thus, by the theorem,

L−1{F (s)} = L−1{2s− 13

s2 + 4
|s+3} = e−3tL−1{2s− 13

s2 + 4
}

= e−3t
(

2L−1{ s

s2 + 4
} − 13L−1{ 1

s2 + 4
}
)

= e−3t
(

2L−1{ s

s2 + 4
} − 13

2
L−1{ 2

s2 + 4
}
)

= e−3t(2 cos(2t)− 1

2
sin(2t)) = 2e−3t cos(2t)− 13

2
e−3t sin(2t).

Heaviside functions and second translation theorem. We will
get a very useful rule that allows us to work easily with piecewise
defined functions. We start with a building block.

Definition 20.5. The Heaviside function or unit step function is the
function

U(t) =

{
1 if x ≥ 0

0 if x < 0
.
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This is like an on/off switch that turns on at t = 0. We can translate
it to make on/off switches at different times:

The function U(t− a) is given by the rule

U(t) =

{
1 if x ≥ a

0 if x < a
.

If we want to “switch on” at t = a and “switch off” later at t = b,
we want the function 

0 if x < a

1 if a ≤ x < b

0 if x > b

,

which is given by

U(t− a)− U(t− b).
Let’s use Heaviside functions to write the function

f(t) =

{
2 cos(4t) if x ≥ 6π

0 if x < 6π
.

We want a 2 cos(4t) to be “on” starting from 6π, so we take

f(t) = 2 cos(4t)U(t− 6π).

What about

g(t) =

{
2 cos(4t) if 6π ≤ x < 8π

0 otherwise
?

We want a 2 cos(4t) times an on/off switch that’s on from 6π to 8π:

g(t) = 2 cos(4t)(U(t− 6π)− U(t− 8π)).

Here’s how we deal with the Laplace transforms of these:

Theorem 20.6. If L{f(t)} = F (s) then

L{f(t− a)U(t− a)} = e−asF (s).

We can write this backwards as

L−1{e−asF (s)} = f(t− a)U(t− a) = L−1{F (s)}|t−a U(t− a).

Slogan 20.7. Laplace transforms turn shifting & on/off into multipli-
cation by an exponential; inverse Laplace transforms turn multiplica-
tion by an exponential into shifting & on/off.
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Example 20.8. Let’s compute L{2e3tU(t − 5)}. To use the formula,
we need to rewrite our function 2e3t as a function of t − 5. To see a
t− 5, let’s rewrite t = (t− 5) + 5.

L{2e3t U(t− 5)} = L{2e3(t−5+5) U(t− 5) = L{2e15e3(t−5) U(t− 5)}}

= 2e15e−5sL{e3t} = 2e15
e−5s

s− 5

Example 20.9. Let’s compute L−1{ s

s2 + 9
e−πs}. We have

L−1{ s

s2 + 9
e−πs} = cos(3t)|t−π U(t− π)

= cos(3(t− π))U(t− π) = cos(3t− 3π)U(t− π).

Discussion Questions.

(1) Find Laplace transforms of the following functions:
• f(t) = e−2t sin(3t)

• g(t) =

{
0 if t < π

sin(2t) if t ≥ π
.

F (s) = L{e−2t sin(3t)} = L{sin(3t)}|s−(−2)

=
3

s2 + 9
|s+2 =

3

(s+ 2)2 + 9
.

g(t) = U(t− π) sin(2t) = U(t− π) sin(2(t− π + π))

= U(t− π) sin(2(t− π) + 2π) = U(t− π) sin(2(t− π))

G(s) = e−πsL{sin(2t)} = e−πs
2

s2 + 4

(2) Find inverse Laplace transforms of the following functions:

• F (s) =
6

s2 + 8s+ 25
.

• G(s) =
e−2s

s− 4
.

• f(t) = 2e−4t sin(3t)

• g(t) =

{
e4t−8 if t ≥ 2

0 if t < 2
.
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21. November 17, 2022

Example 21.1. Let’s use Laplace transforms to solve the following

initial value problem:

y
′ + y =

{
0 if t < π

sin(2t) if t ≥ π

y(0) = 1

.

First we transform both sides. For the left we use the derivative rule.
We computed the Laplace transform of the right hand side using the
second translation theorem last time.

sY − 1 + Y = e−πs
2

s2 + 4

 (s+ 1)Y = e−πs
2

s2 + 4
+ 1

 Y = e−πs
2

(s+ 1)(s2 + 4)
+

1

s+ 1
.

We will want to use partial fractions to deal with the first one (which
we’ll skip since we’ve done a few of these recently):

2

(s+ 1)(s2 + 4)
= · · · = 2/5

s+ 1
+
−2s/5 + 2/5

s2 + 4

=
2

5

1

s+ 1
+
−2

5

s

s2 + 4
+

1

5

2

s2 + 4

so

Y = e−πs
(

2

5

1

s+ 1
+
−2

5

s

s2 + 4
+

1

5

2

s2 + 4

)
+

1

s+ 1
.

We now want to get to the inverse transform:

L−1{2

5

1

s+ 1
+
−2

5

s

s2 + 4
+

1

5

2

s2 + 4
} =

2

5
e−t − 2

5
cos(2t) +

1

5
sin(2t),

y = U(t− π)

(
2

5
e−(t−π) − 2

5
cos(2(t− π)) +

1

5
sin(2(t− π))

)
+ e−t,

y =

{
e−t if t < π

e−t + 2
5
e−(t−π) − 2

5
cos(2(t− π)) + 1

5
sin(2(t− π)) if t ≥ π

.
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Dirac delta function (§7.5). Suppose we consider the same amount
of total force applied over smaller and smaller time intervals. One way
to model this is by a sequence of functions

δc(t) =

{
1
2c

if − c ≤ t ≤ c

0 otherwise
.

If we wanted to model a total force of 1 instantaneously, this would
correspond to taking the limit as a → 0. The result is not a function,
but it is similar enough to one that we work with it like one anyway.
We set

δ(t)“ = lim
c→0

δc(t)”

and call it the Dirac delta function. We treat this like a “function” that
is zero except at t = 0, and its integral over any interval containing
zero is 1. It is an instantaneous spike that has some area (=1) under
the curve.

We can likewise shift and get

δ(t− a)

a delta function centered at t = a.

Theorem 21.2. For a > 0,

L{δ(t− a)} = e−sa.

Example 21.3. Consider the initial value problem
y′′ + y = 2δ(t− 2π)

y(0) = 0

y′(0) = 0

.

The y′′+y part of the equation is the sort of thing arising from a mass-
spring system with no friction. The 2δ(t− 2π) on the right hand side
corresponds to an instantaneous force at time 2π. Let’s solve the IVP
with Laplace transforms. Transforming both sides gives

(s2 + 1)Y = 2e−2πs,

so

Y =
2

s2 + 1
e−2πs.
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Then transforming back gives

y = L−1{e−2πs 2

s2 + 1
} = L−1{ 2

s2 + 1
}|t−2π U(t− 2π)

= 2 sin(t− 2π)U(t− 2π) = 2 sin(t)U(t− 2π)

=

{
0 if t < 2π

2 sin(t) if t ≥ 2π
.

Matrices, vectors, and linear systems of ODEs (§8.1). A vector
is just a stack:

x =

[
4
−1

]
or x =

 2
π
−1/7

 .
While vectors of numbers are familiar, we will equally well consider
vectors of functions of a variable t too:

x =

[
cos(t)
sin(t)

]
or x =

 e−t

π
t2 − 1

 .
A vector of numbers x =

[
4
−1

]
can be graphed as the point (4,−1) in

the (x, y)-plane; a vector of functions x =

[
cos(t)
sin(t)

]
corresponds to a

parametrized curve. For vectors of three entries, we can graph them in
(x, y, z)-space. The derivative is given by differentiating each entry:

x =

[
cos(t)
sin(t)

]
 x′ =

[
− sin(t)
cos(t)

]
.

A matrix is just a block (of numbers or functions of a variable t):

A =

[
2 π
−7/4 3

]
or A =

[
2 cos(t) πt2

−7/4 3/t

]
.

Given a 2×2 matrix A =

[
a b
c d

]
and a vector with 2 entries x =

[
x
y

]
,

we can multiply them to get another 2 entry vector by the rule

Ax =

[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
.

Put another way, given some superpositions of x and y like[
ax+ by
cx+ dy

]
,
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we can use matrix times vector arithmetic to encode it: we take the
vector of variables being combined, and the matrix of coefficients com-
bining them. The same idea works for 3× 3 matrices and vectors of 3
entries, and even nonsquare m× n matrices and n-vectors.

A linear system in two variables is a system of ODEs of the form{
x′(t) = a(t)x(t) + b(t)y(t) + f(t)

y′(t) = c(t)x(t) + d(t)y(t) + g(t)
.

We can write this using matrices and vectors. Take x =

[
x(t)
y(t)

]
, so

x′ =

[
x′(t)
y′(t)

]
. This takes care of the left-hand side. In the middle we

have a something like matrix times vector, so set A(t) =

[
a(t) b(t)
c(t) d(t)

]
.

Then there is a leftover f =

[
f(t)
g(t)

]
. So, we get

x′(t) = A(t)x(t) + f(t).

Similarly, a linear system in three variables looks like

x′(t) = A(t)x(t) + f(t)

x(t) =

x(t)
y(t)
z(t)


for A(t) a 3×3 matrix of functions, and f(t) some vector of 3 functions.
This is the same thing as a system of equations

x′(t) = a11(t)x(t) + a12(t)y(t) + a13(t)z(t) + f1(t)

y′(t) = a21(t)x(t) + a22(t)y(t) + a23(t)z(t) + f2(t)

z′(t) = a31(t)x(t) + a32(t)y(t) + a33(t)z(t) + f3(t)

,

where A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 and f =

f1f2
f3

.

Definition 21.4. We say that a linear system is homogeneous if it
can be written as x′ = Ax: that is, the f part is zero in the form
x′ = Ax + f .

Example 21.5. The linear system{
x′(t) = 2x+ 3y − 7

y′(t) = x+ 5
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can be written as
x′ = Ax + f

with A =

[
2 3
1 0

]
and f =

[
−7
5

]
.

A solution is a vector of functions that makes the matrix differential
equation/system of ODEs true.

Example 21.6. Let’s verify that x =

[
e−5t

2e−5t

]
is a solution to the linear

system

x′ =

[
3 −4
4 −7

]
x.

First let’s do this by unpackaging in terms of equations. The system is{
x′ = 3x− 4y

y′ = 4x− 7y
.

For our attempted solution vector, we have x = e−5t and y = 2e−5t, so
x′ = −5e−5t and y′ = −10e−5t. Plugging in we get{

−5e−5t
?
= 3(e−5t)− 4(2e−5t)

−10e−5t
?
= 4(e−5t)− 7(2e−5t)

.

Since both equations are true, this is a solution.
Let’s do this again just in matrix and vector notation.

We have x′ =

[
−5e−5t

−10e−5t

]
, and[

3 −4
4 −7

]
x =

[
3 −4
4 −7

] [
e−5t

2e−5t

]
=

[
3(e−5t)− 4(2e−5t)
4(e−5t)− 7(2e−5t)

]
,

and since equality holds, this is a solution.

22. November 22, 2022

Discussion Questions.

(1) Write the system{
7 = t2x+ cos(t)y − x′

y′ − sin(t)x = t5

in the matrix form x′ = Ax + f . Is it homogeneous?

(2) Verify that x =

[
cos(t)
sin(t)

]
is a solution to the system x′ =[

0 −1
1 0

]
x.
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(3) Can you solve the system x′ =

[
a 0
0 b

]
x for constants a, b?

(4) Can you guess any solutions of the system x′ =

[
0 1
1 0

]
x?

(1)

x′ =

[
t2 cos(t)

sin(t) 0

]
+

[
−7
t5

]
It is not homogeneous.

(2) x′ =

[
− sin(t)
cos(t)

]
and[

0 −1
1 0

]
x =

[
0 · cos(t) +−1 · sin(t)
1 · cos(t) + 0 · sin(t)

]
,

and these are equal.
(3) Even though we don’t know any techniques, we can rewrite

this as {
x′ = ax

y′ = by
,

and we see that the two variables don’t interact with each
other, so we can solve these separately. Thus, x = C1e

ax,
and y = C2e

bx, so

x =

[
C1e

ax

C2e
bx

]
= C1e

at

[
1
0

]
+ C2e

bt

[
0
1

]
.

An initial value problem for an n× n linear system

x′ = Ax + f

also consists of values for each of the variables at one value of the
independent variable. For example,


x′ = 2x− 3y

y′ = −5x+ 7y

x(2) = −1

y(2) = 1

,
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which we can rewrite as
x′ =

[
2 −3

−5 7

]
x

x(2) =

[
−1

1

] .

Superpositions, linear independence, and general solutions
again. Many of the important basic facts from higher order ODEs
have close analogues for linear systems.

First we focus on homogeneous linear systems.

Theorem 22.1. Let x′(t) = A(t)x(t) be a homogeneous linear system.
If x1(t), . . . ,xm(t) are any solutions and c1, . . . , cm are any constants,
then any superposition

c1x1(t) + · · ·+ cmxm(t)

is also a solution.

Definition 22.2. Let x1(t), . . . ,xm(t) be vectors (of the same size).
We say these are linearly dependent if there are constants c1, . . . , cm
not all zero such that

c1x1(t) + · · ·+ cmxm(t) = 0,

and linearly independent .

Given two vectors of size 2, x1(t) =

[
x1(t)
y1(t)

]
and x2(t) =

[
x2(t)
y2(t)

]
,

they are linearly independent if and only if

det

[
x1(t) x2(t)
y1(t) y2(t)

]
6= 0.

Likewise, given three vectors of size 3,

x1(t) =

x1(t)y1(t)
z1(t)

 , x2(t) =

x2(t)y2(t)
z2(t)

 , and x3(t) =

x3(t)y3(t)
z3(t)


they are linearly independent if and only if

det

x1(t) x2(t) x3(t)
y1(t) y2(t) y3(t)
z1(t) z2(t) z3(t)

 6= 0.
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Theorem 22.3. Given an n × n homogeneous linear system x′(t) =
A(t)x(t), if we have n (same n!) linearly independent solution vectors
x1(t), . . . ,xn(t), then the general solution is

C1x1(t) + · · ·+ Cnxn(t).

We call a set of n linearly independent solution vectors a fundamental
set of solutions.

Example 22.4. Suppose we are told that for the linear system

x′ =

[
2 1
−1 0

]
x

that the vectors

x1 = et
[
1
3

]
and x2 = tet

[
4
−4

]
are solutions. Let’s use these to write the general solution, First, we are
looking for two linearly independent solution vectors to get a fundamen-
tal set, so we should check that our vectors are linearly independent.

det

[
et 4tet

3et −4tet

]
= (et)(−4tet)− (4tet)(3et) = −16te2t 6= 0

so they are linearly independent. Since it is the right number of them,
we have a fundamental set. Then the general solution is

C1e
t

[
1
3

]
+ C2te

t

[
4
−4

]
.

Theorem 22.5. Given an n×n nonhomogeneous linear system x′(t) =
A(t)x(t) + f(t), given one particular solution xp(t) and a fundmental
set of solution vectors x1(t), . . . ,xn(t) to the associated homogeneous
equation, then the general solution is

xp(t) + C1x1(t) + · · ·+ Cnxn(t).

23. November 29, 2022

Higher order equations (and systems) as linear systems. At
this point, it might be reasonable to ask: why are we restricting to
systems with equations of order one? It turns out that we can rewrite
higher order linear ODEs as linear systems. Let’s see it in an example:

Example 23.1. Consider the equation

x′′ − 2tx′ + cos(t)x = 0.
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To rewrite this as a linear system, we will add another variable y, and
set y = x′. Then y′ = x′′, so we can write our given equation as

y′ = 2tx′ − cos(t)x = − cos(t)x+ 2ty,

so we get the system {
x′ = y

y′ = − cos(t)x+ 2ty
,

or

x′ =

[
0 1

− cos(t) 2t

]
x.

Example 23.2. Consider the initial value problem
x(3) − cos(t)x = et

2

x(1) = 0

x′(1) = 0

x′′(1) = 2

.

To rewrite this as a linear system, we’ll start by setting x1 = x, x2 = x′,
and then x3 = x′2 = x′′. Then x(3) = x′3, so our given equation is

x′3 = cos(t)x1 + et
2

.

We then get the system
x′1 = x2
x′2 = x3
x′3 = cos(t)x1 + et

2

x1(1) = 0, x2(1) = 0, x3(1) = 2

.

Slogan 23.3. To rewrite an nth order linear ODE as a linear system,
take new variables corresponding to the first n − 1 derivatives of the
starting variable.

Homogeneous linear systems with constant coefficients (§8.2).
We now turn our attention to homogeneous linear systems with con-
stant coefficients: these are systems of the form

x′ = Ax

where A is a matrix of constants, and x is still a vector of unknown
functions. We will mostly focus on 2 × 2 systems (two equations and
two variables). To prepare for the method of solving these, let’s return
to a special case where these were easy to solve.
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When A =

[
a 0
0 b

]
for constants a, b, we were able to solve this. Let’s

remember why we were able to: As a system of equations, we have{
x′ = ax

y′ = by

and the dependent variables don’t interact so we can solve them sepa-
rately. As a reminder, we found the general solution to be{

x = C1e
at

y = C2e
bt

or x = C1e
at

[
1
0

]
+ C2e

bt

[
0
1

]
.

To rephrase this slightly, let’s write

x =

[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]
,

so

[
1
0

]
is the x-direction (distance 1) and

[
0
1

]
is the y-direction (dis-

tance 1). Then our particular matrix[
a 0
0 b

] [
1
0

]
=

[
a
0

]
and [

a 0
0 b

] [
0
1

]
=

[
0
b

]
,

so the matrix

[
a 0
0 b

]
preserves the x-direction and the y-direction

(which led to a just x equation and a just y equation). To solve linear
systems with constant coefficients in general, we are going to look for
directions that are preserved.

Eigenvectors and eigenvalues.

Definition 23.4. Given a (constant) 2 × 2 matrix A, a (constant)
nonzero vector k is an eigenvector with eigenvalue λ, for a real or
complex number λ, if Ak = λk.

The point is that A times k goes in the same direction, but stretched
by a factor of λ. In particular, eigenvector directions are the directions
that are preserved.
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In particular, for our special matrix

[
a 0
0 b

]
,

[
1
0

]
is an eigenvector

with eigenvalue a since[
a 0
0 b

] [
1
0

]
=

[
a
0

]
= a

[
1
0

]
and

[
0
1

]
is an eigenvector with eigenvalue b since[

a 0
0 b

] [
0
1

]
=

[
0
b

]
= b

[
0
1

]
.

For a more mysterious example, if

A =

[
3 1
2 2

]
,[

1
−2

]
is an eigenvector with eigenvalue 1 since[

3 1
2 2

] [
1
−2

]
=

[
1
−2

]
= 1 ·

[
1
−2

]
,

and

[
1
1

]
is an eigenvector with eigenvalue 4 since[

3 1
2 2

] [
1
1

]
=

[
4
4

]
= 4 ·

[
1
1

]
.

We now want to see how to find eigenvectors and eigenvalues. We
will use a couple of tricks from linear algebra. First, we will find it
useful to talk about the identity matrix

I =

[
1 0
0 1

]
:

it earns its name since Ix = x. Now the first trick we will need is to
rewrite the eigenvector equation:

Ax = λx Ax = λIx (A− λI)x = 0.

Next, we will use a linear algebra fact:

Fact 23.5. For a (constant) matrix B, the equation Bx = 0 has a
nonzero (constant) vector solution if and only if det(B) = 0.

Given these tricks we have the following:

Theorem 23.6. The eigenvalues of a (constant) matrix A are the so-
lutions λ of the equation det(A− λI) = 0.
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Example 23.7. Let’s return to the matrix

A =

[
3 1
2 2

]
and use the determinant formula to find the eigenvalues:

A− λI =

[
3 1
2 2

]
−
[
λ 0
0 λ

]
=

[
3− λ 1

2 2λ

]
 det(A− λI) = (3− λ)(2− λ)− 2 · 1 = 4− 5λ+ λ2  λ = 1, 4.

Once we know the eigenvalues, for each on, we can plug them into
the eigenvector equation and solve for an eigenvector.

Example 23.8. For the same matrix

A =

[
3 1
2 2

]
we have eigenvalues λ1 = 1 and λ2 = 4. To find an eigenvector for 1,
set

Ax = 1x 

{
3x+ y = x

2x+ 2y = y
 

{
2x+ y = 0

2x+ y = 0
 y = −2x

so to get an eigenvector we can take x = 1 and get the eigenvector

k1 =

[
1
−2

]
. Note that any multiple of this vector is also an eigenvector

with this eigenvalue; our goal for now is to just find one. and for λ2 = 4,

Ax = 4x 

{
3x+ y = 4x

2x+ 2y = 4y
 

{
−x+ y = 0

2x− 2y = 0
 y = x

Taking x = 1 we get an eigenvector

k2 =

[
1
1

]
.

24. December 1, 2022

Slogan 24.1. To find eigenvectors and eigenvalues, first find eigenval-
ues λ with det(A − λI) = 0, then plug the eigenvalues back in to find
eigenvectors.

Example 24.2. Let’s find the eigenvectors and eigenvalues for the

matrix A =

[
2 0
−3 −4

]
. First we take

det(A− λI) = det

[
2− λ 0
−3 −4− λ

]
= (−2− λ)(−4− λ)
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so λ1 = 2, λ2 = −4 are the eigenvalues. We plug in back in to the
system of equations starting with λ = 2

Ax = 2x 

{
2x = 2x

−3x− 4y = 2y
 −3x− 6y = 0 x = −2y

so we can take k1 =

[
−2
1

]
as an eigenvector.

For −4,

Ax = −4x 

{
2x = −4x

−3x− 4y = −4y
 

{
6x = 0

−3x = 0
 x = 0

so we can take k2 =

[
0
1

]
as an eigenvector.

Solving linear systems using eigenvectors and eigenvalues. Our
motivation for studying eigenvectors and eigenvalues was that they
stay the same direction with out matrix A. Based on this, given an
eigenvector k with eigenvalue λ, it is reasonable to hope for a solution
vector that travels entirely in the same direction as k. Let’s attempt
to find a solution of the form x = u(t)k, where u is a (scalar) function
of t. Plugging in, we get:

x′ = Ax (uk)′ = Auk u′k = uAk = uλk,

and since k is nonzero, we cancel to get u′ = λu. According to day one
of this class, this has solution u = Ceλt. Thus, x = Ceλtk is a solution
vector!

We summarize this in the following:

Theorem 24.3. Given a homogeneous linear system with constant co-
efficients

x′ = Ax,

if k is an eigenvector with eigenvalue λ, then

x = eλtk

is a solution.

Example 24.4. Consider the linear system

x′ =

[
3 1
2 2

]
x.
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We have already computed that k1 =

[
1
−2

]
is an eigvenvector with

eigenvalue λ1 = 1 and k2 =

[
1
1

]
is an eigvenvector with eigenvalue

λ2 = 4. Thus we have solutions

x1 = et
[

1
−2

]
=

[
et

−2et

]
,

x2 = e4t
[
1
1

]
=

[
e4t

e4t

]
.

In fact, we can use these to express the general solution as long as they
are linearly independent. Let’s check:

det

[
et e4t

−2e−t e4t

]
= et · e4t − e4t(−2et) = 3e5t 6≡ 0

so these are linearly independent. Our general solution is then

x = C1e
t

[
1
−2

]
+ C2e

4t

[
1
1

]
,

or {
x = C1e

t + C2e
4t

y = −2C1e
t + C2e

4t
.

Like in this example, it turns out that solutions that come from
different eigenvalues are always linearly independent!

Theorem 24.5. Given a 2×2 homogeneous linear system with constant
coefficients

x′ = Ax

if A has distinct real eigenvalues λ1 6= λ2, with corresponding eigenvec-
tors k1 and k2, then the general solution is given by

x = C1e
λ1k1 + C2e

λ2k2.

Discussion Questions.

(1) Solve the system {
x′ = 4x− y
y′ = 5x− 2y

(2) Solve the IVP with initial condition

x(0) = 1, y(1) = 0.
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(1) First take the coefficient matrix A =

[
4 −1
5 −2

]
and look for

eigenvectors and eigenvalues. We start with eigenvalues:

0 = det(A−λI) = det

[
4− λ −1

5 −2− λ

]
= λ2−2λ−3 = (λ+1)(λ−3)

so we have λ1 = 3, λ2 = −1. Then we plug these in and
solve the systems to get (steps skipped)

k1 =

[
1
1

]
, k2 =

[
1
5

]
.

We have distinct eigenvalues so we can use the formula

x = C1e
3t

[
1
1

]
+ C2e

−t
[
1
5

]
.

(2) We have[
1
0

]
= x(0) = C1e

3·0
[
1
1

]
+ C2e

−0
[
1
5

]
=

[
C1 + C2

C1 + 5C2

]
,

so C1 = 5
4

and C2 = −1
4

. Thus we get

x =
5

4
e3t
[
1
1

]
+
−1

4
e−t
[
1
5

]
or {

x = 5
4
e3t − 1

4
e−t

y = 5
4
e3t − 5

4
e−t

.

25. December 6, 2022

Discussion Questions. The coins that are used by a country are
made of a low quality metal and become defective on a regular basis.
Suppose that right now there are 20 million coins in circulation, of
which 7 million are defective. Every week, about one third of the
good coins in circulation become bad coins, and one third of the bad
coins fall apart and disappear from circulation. To make sure there
are enough coins, for every (bad) coin that gets destroyed, it issues two
good replacement coins.

The government wants to know: Does the number of bad coins tend
to zero? If not, what happens to the ratio of bad coins?
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(1) We want to set up a linear system to model the number of good
coins and the number of defective coins as time progresses. In-
troduce variables to keep track of the quantities we are inter-
ested in. What is the independent variable and what are the
dependent variables? What are the units for each?

(2) What factors in the story affect the number of good coins in
circulation? What factors in the story affect the number of
bad coins in circulation? Can you express each in terms of the
number of good coins / bad coins at a given time?

(3) Model the previous part with a system of differential equations.
(4) We also need an initial condition. Write it down.

(1) Take x to be good coins, y to be bad coins both in millions
of coins, and t to be time in weeks.

(2) The good coins going bad subtracts 1/3x worth of coins
from x and adds 1/3x worth of coins to y every week on
average. The bad coins falling apart and getting replaced
subtracts 1/3y worth of coins from y and adds 2/3y worth
of coins to x every week on average.

(3) {
x′ = −1

3
x+ 2

3
y

y′ = 1
3
x− 1

3
y

.

(4) x(0) = 13, y(0) = 7.

Let’s do an experiment to test our model. Each coin you’ve been
given represents a million coins. Some represent good coins and some
represent bad. Every day, take a third of the coins, replace the good
ones you collected with bad ones, throw away the bad ones you col-
lected, and add back in twice as many good coins. Now let’s solve
this.

(1) Solve the linear system.
(2) Solve the initial value problem. Use this to answer the questions

we started with.

(1) First we find eigenvalues of A =

[
−1

3
2
3

1
3
−1

3

]
. We have

0 = det(A− λI) = (−1

3
− λ)2 − 1

3
· 2

3
= λ2 +

2

3
λ− 1

9
.
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By the quadratic formula, we get λ = −1±
√
2

3
. Plug in λ1 =

−1+
√
2

3
to get the system{

−1+
√
2

3
x = −1

3
x+ 2

3
y

−1+
√
2

3
y = 1

3
x− 1

3
y

,

which simplifies to one equation x −
√

2y = 0, and k1 =[√
2

1

]
is an corresponding eigenvector. We follow the same

process with λ2 = −1−
√
2

3
and get an eigenvector k2 =[

−
√

2
1

]
. Thus the general solution is

x = C1e
−1+

√
2

3
t

[√
2

1

]
+ C2e

−1−
√
2

3
t

[
−
√

2
1

]
.

(2) We plug in the initial conditions to find C1 and C2:{
13 = C1

√
2− C2

√
2

7 = C1 + C2

,

which we solve to get C1 = 13
2
√
2

+ 7
2

and C2 = − 13
2
√
2

+ 7
2
.

Now consider the linear system{
x′ = −1

3
x+ 2

3
y

y′ = −1
3
x+ 1

3
y

.

First devise an experiment with coins to test what happens with the
linear system starting with x = 13 and y = 7.

Now try to solve the system using our techniques. What do you
observe?

The coefficient matrix has imaginary eigenvalues ±i1
3
. One can

observe that we get periodic solutions with sines and cosines instead
of growing or shrinking solutions.
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