ASSIGNMENT \#4

(1) Find two different composition series for the ring $R=\mathbb{Z}[x] /\left(6, x^{2}\right)$ as a module over itself.
(2) The purpose of this problem is to show that the ring

$$
R=\left[\begin{array}{ll}
\mathbb{Z} & 0 \\
\mathbb{Q} & \mathbb{Q}
\end{array}\right]=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right] \right\rvert\, a \in \mathbb{Z}, b, c \in \mathbb{Q}\right\}
$$

is left Noetherian but not right Noetherian.
(a) Let I be a left ideal. Show that if there is some $\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right] \in I$ with $a \neq 0$, then for some ideal $J \subseteq \mathbb{Z}$,

$$
I=\left[\begin{array}{ll}
J & 0 \\
\mathbb{Q} & 0
\end{array}\right] \quad \text { or } \quad I=\left[\begin{array}{ll}
J & 0 \\
\mathbb{Q} & \mathbb{Q}
\end{array}\right] .
$$

(b) Show that the left ideals contained in $\left[\begin{array}{ll}0 & 0 \\ \mathbb{Q} & \mathbb{Q}\end{array}\right]$ are exactly the \mathbb{Q}-vector subspaces of $\left[\begin{array}{ll}0 & 0 \\ \mathbb{Q} & \mathbb{Q}\end{array}\right]$. Conclude that R is left Noetherian.
(c) Show that for every $n \in \mathbb{N}$, the subset of R given by $\left[\begin{array}{cc}0 & 0 \\ \frac{1}{n} \mathbb{Z} & 0\end{array}\right]$ is a right ideal. Conclude that R is not right Noetherian.
(3) Computations with Schur's Lemma.
(a) Let D be a division ring and $n \geqslant 1$ be an integer. Show^{1} that $\operatorname{End}_{\operatorname{Mat}_{n}(D)}\left(D^{n}\right) \cong D^{\text {op }}$.
(b) Let $n \geqslant 3$, and let $D_{2 n}$ be the dihedral group of order $2 n$. Show that the standard representation of $D_{2 n}$ on $V=\mathbb{R}^{2}$ acting by rotations and reflections is simple.
(c) With V as in the previous part, show that $\operatorname{End}_{\mathbb{R}\left[D_{2 n}\right]}(V) \cong \mathbb{R}$ as rings.
(4) The goal of this problem is to find every irreducible \mathbb{R}-linear representation (up to isomorphism) of the dihedral group D_{8} of order 8 .
(a) Prove ${ }^{2}$ there are 4 irreducible representations $M_{1}, M_{2}, M_{3}, M_{4}$ whose underlying \mathbb{R}-vector space is just \mathbb{R} and that are pairwise nonisomorphic.
(b) Let M_{5} be \mathbb{R}^{2} with the standard action of D_{8} (as in problem 3). Prove that M_{1}, \ldots, M_{5} are the only irreducible \mathbb{R}-linear representations of D_{8} up to isomorphism.
(5) Let $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ denote the group of quaternions.
(a) Find the Artin-Wedderburn decomposition of each of $\mathbb{C}[Q]$ and $\mathbb{C}\left[D_{8}\right]$ and use these to prove there is a ring isomorphism $\mathbb{C}[Q] \cong \mathbb{C}\left[D_{8}\right]$.
(b) Find ${ }^{3}$ the Artin-Wedderburn decomposition of each of $\mathbb{R}[Q]$ and $\mathbb{R}\left[D_{8}\right]$ and use these to prove these rings are not isomorphic.

[^0]
[^0]: ${ }^{1}$ Hint: let $x \in D^{\mathrm{op}}$ correspond to the map given by multiplication on the right by x.
 ${ }^{2}$ Recall that a 1-dimensional representation of G is a homomorphism from G to \mathbb{R}^{\times}, and that any such map factors through the abelianization of G. It might be helpful to note that the derived subgroup of D_{8} is $\left\langle r^{2}\right\rangle$ where r is the "rotation" and the abelianization of D_{8} is isomorphic to $C_{2} \times C_{2}$.
 ${ }^{3}$ Hint: Use the previous problem to find the Artin-Wedderburn decomposition of $\mathbb{R}\left[D_{8}\right]$. To find the decomposition of $\mathbb{R}[Q]$, note that the group Q acts \mathbb{R}-linearly on the left on the division ring of real quaternions \mathbb{H}, via the identification of Q as the subgroup $\{ \pm 1, \pm i, \pm j, \pm k\}$ of \mathbb{H}^{\times}, and thus \mathbb{H} is a left $\mathbb{R}[Q]$-module. Thus, there is a surjective ring map $\mathbb{R}[Q] \rightarrow \mathbb{H}$.

