ASSIGNMENT #1

- (1) (a) Show that if R is a ring and $\alpha : M \to N$ is a morphism in R Mod, then α is monic if and only if it is injective, and α is epic if and only if it is surjective.
 - (b) Show that the map $\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}$ in \mathbb{Z} **Mod** has no left inverse (even though it is injective) and that the quotient map $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/2\mathbb{Z}$ in \mathbb{Z} **Mod** has no right inverse (even though it is surjective).
- (2) (a) An abelian group M is divisible if for every m ∈ M and nonzero n ∈ Z, there is some m' ∈ M such that m = nm'. Let **DAb** be the full subcategory of **Ab** consisting of all divisible abelian groups. Show that the quotient map Q → Q/Z is monic in **DAb** (even though it isn't injective).
 - (b) Show that the inclusion map $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is epic in **Ring** (even though it isn't surjective).
- (3) (a) Find a pair of objects in **Fld** with no product.
 - (b) Find a pair of objects in **Fld** with no coproduct.
 - (c*) If K and L are fields of characteristic zero, do K and L admit a product/coproduct in \mathbf{Fld} ?
- (4) Let N be a left R-module, and $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of submodules of N. We say that N is the *internal direct sum* of $\{M_{\lambda}\}$ if the canonical map $\bigoplus_{\lambda \in \Lambda} M_{\lambda} \to N$ is an isomorphism. Show that N is the internal direct sum of $\{M_{\lambda}\}$ if and only if
 - N is generated by $\bigcup_{\lambda \in \Lambda} M_{\lambda}$, and
 - for every finite subset $\lambda_0, \lambda_1, \ldots, \lambda_t$ of (at least two distinct) elements of Λ ,

$$M_{\lambda_0} \cap (M_{\lambda_1} + \dots + M_{\lambda_t}) = 0.$$

A covariant functor F between two categories \mathscr{C} and \mathscr{D} is a rule that assigns to each object A of \mathscr{C} an object F(A) of \mathscr{D} , and to each morphism $A \xrightarrow{\alpha} B$ of \mathscr{C} a morphism $F(A) \xrightarrow{F(\alpha)} F(B)$ of \mathscr{D} such that for every object A of \mathscr{C} , $F(1_A) = 1_{F(A)}$, and $F(\alpha \circ \beta) = F(\alpha) \circ F(\beta)$.

- (5) Suppose that \mathscr{C} and \mathscr{D} are subcategories of **Set** (e.g., **Set**, **Sgrp**, **Grp**, **Ab**, **Ring**, R Mod, **Top**) and $F : \mathscr{C} \to \mathscr{D}$ is a covariant functor.
 - (a) Show that if α has a left inverse, then $F(\alpha)$ is injective (as a function).
 - (b) Show that if α has a right inverse, then $F(\alpha)$ is surjective (as a function).
 - (c) Use part (a) to show¹ that there is no covariant functor $F : \mathbf{Grp} \to \mathbf{Grp}$ that, on objects, maps a group to its center.
 - (d*) Show¹ that if we only assume that α is monic, then $F(\alpha)$ may not be injective.
- (6) (a) Show² that in $\mathbb{Z} \mathbf{Mod}$, the objects $\coprod_{n \in \mathbb{N}} \mathbb{Z}$ and $\prod_{n \in \mathbb{N}} \mathbb{Z}$ are not isomorphic. (b*) Show³ that $\prod_{n \in \mathbb{N}} \mathbb{Z}$ is not a free module.

¹Hint: You might consider symmetric groups $\mathbb{S}_m \subseteq \mathbb{S}_n$.

 $^{^{2}}$ Hint: You may want to use the fact that the collection of finite sequences with values in a countable set is a countable set.

³Hint: Suppose so. Show that there is a countable free submodule T such that $\coprod_{n\in\mathbb{N}}\mathbb{Z} \subseteq T \subseteq \prod_{n\in\mathbb{N}}\mathbb{Z}$ and that the quotient $(\prod_{n\in\mathbb{N}}\mathbb{Z})/T$ is free. Then find a nonzero element in $(\prod_{n\in\mathbb{N}}\mathbb{Z})/T$ that is divisible by infinitely many integers.