(1) Definitions/Theorem statements
(a) State the definition of the limit of $f(x)$ as x approaches a.

The limit of $f(x)$ as x approaches a is L provided: for any $\varepsilon>0$, Rive B see $\delta>0$ such that if $0\langle x x-a l<\delta$, them $f(x) i s$ defined and $f(x)-L \mid<\varepsilon$.
(b) State the Extreme Value Theorem.

If f is continuous on the closed interval [a $\mid c]$, then Here exist $r, s \in[a, b]$ such lat $f(r) \leq f(x) \leq f(s) \quad f_{a}$ all $x \in[a, b]$.
(c) State the Bolzano-Weierstrass Theorem.

Every sequence has a monotone subsequence.
(2) Determine if each of the following statements is TRUE or FALSE, and justify your choice with a short argument or a counterexample.
(a) There is some $t \in[-1,1]$ such that $t^{4}+5 t=-1$.

True
Since $f(x)=x^{4}+5 x$ is a polynomial, and $f(-1)=-4 \leqslant-1 \leq 6=f(1)$, He Intermediate value Theorem ensures such a value of t.
(b) Every sequence has a convergent subsequence

FALSE
Every subsequence of $\left\{n i_{n=1}^{\infty}\right.$ diverges, since any subsequence is not bounded above.
(c) If f and g are functions such that $\lim _{x \rightarrow 5} f(x)$ and $\lim _{x \rightarrow 5} g(x)$ both exist, then $\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}$ exists.
FALSE
Let $f(x)=1$ and $g(x)=x-5$.
him $\lim _{x \rightarrow 5} f(x)=1, \lim _{x \rightarrow 5} g(x)=0$,

$$
\lim _{x \rightarrow 5} \frac{f(x)}{g(x)} \text { does not exist. }
$$

(d) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, and $\lim _{k \rightarrow \infty} a_{2 k}=9$, then $\lim _{k \rightarrow \infty} a_{2 k-1}=9$.

TRUE
Since $\left\{a_{n} 3_{n=1}^{\infty}\right.$ BCavchy, it is convergent, jo every subsequence must converge to the same value.
(e) If $\lim _{x \rightarrow 0} f(x)=3$, then the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 , where $a_{n}=\frac{f(1 / n)}{n}$.

TRUE
Since $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ converges to 0 (and no value is OI, it follows that $\{f(7 / n)\}_{n=1}^{\infty}$ converges to 3 .
Then we can consider $\frac{f(1 / n)}{n}$ as $f(1 / n) \cdot \frac{7}{n}$, and since $\{f(z / n)\}_{n=1}^{\infty}$ converges to $3 \&\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ converges to o, the sequence corvergesto te prods, o.
(3) Proofs.
(a) Prove that the function

$$
f(x)= \begin{cases}2 x-1 & \text { if } x \geq 1 \\ x & \text { if } x<1\end{cases}
$$

is continuous at the point $x=1$.
Let $\varepsilon>0$. Tate $\delta=\varepsilon / 2$.
Let x be a real number sud l that

$$
|x-1|<\delta .
$$

If $x \geq 1$, the

$$
\begin{aligned}
& |f(x)-f(1)|=|(2 x-1)-1|=|2 x-2| \\
& =2|x-1|<2 \delta=\varepsilon .
\end{aligned}
$$

If $x<1$, them

$$
|f(x)-f(7)|=|x-1|<\delta=\varepsilon \varepsilon<\varepsilon \text {. }
$$

Thus, for all such x,

$$
|f(x)-f(7)|<\varepsilon \text {. }
$$

hiss shows that f is cretinous at $x=1$.
(b) Assume f is a function whose domain is all of \mathbb{R}, let a be any real number, and assume that $\lim _{x \rightarrow 2} f(x)=L$ for some real number L. Prove that ${ }^{1}$ if $f(x) \leq a$ for all x, then $L \leq a$.

${ }^{1}$ Hint: I recommend a proof by contradiction.

TRUE
Recall Hat here is a sequence of rational numbers $\left\{q_{n}\right\}_{n=1}^{\infty}$ in which every rational number occurs infinitely many times. Let $\left\{q_{n_{k}}\right\}_{k=1}^{\infty}$ be the
subsequence of $厶_{n} n_{n=1}^{\infty}$ obtained by skipping all terms that are not in the interval $[0,7]$. Call this sequence $\{r n 3 n=1$.
Let $\left\{r_{n_{k}}\right\}_{k=1}^{\infty}$ be a convergent subsequence of $\left\{v_{n}\right\}_{n=1}^{\infty}$. Since $0 \leq \sqrt{n}_{k} \leq 7$ far all k, we must have $0 \leq \lim _{k \rightarrow \infty} r_{n_{k}} \leq 7$.

On the other hand, let $a \in[0,7]$. since 0 occurs in $\sin 3_{n=1}^{\infty}$ in finitely nanytines, there is a constant subsequence \{o\} of $\sin \}_{n=1}^{\infty}$, which converges to 0 . If $a \in(0,7]$, note that Here is a sequence of rational numbers $\{$ vuin=2 Hat converges to a.
passing to a subsequence, we can assume it consists of positive numbers (ie, let $\varepsilon=a$, and take the subsequence $\left\{v_{v+n} i_{n=1}^{\infty}\right.$, with N as in definition of converges).
This sequence is now a subsequence of $\left\{r_{n} \sum_{n=1}^{\infty}\right.$,so a $i s$ a limit of r subsequence of $\operatorname{Er} r_{n=2}^{\infty}$.

