
Math 325. Exam #1

(1) Definitions/Theorems
(a) State the definition for a real number b to be a lower bound for a set S

of real numbers.

For every x ∈ S, b ≤ x.

(b) State the Completeness Axiom for R.

Every nonempty bounded above subset of R has a supremem.

(c) State the definition for a sequence {an}∞n=1 to diverge to −∞.

For every m ∈ R, there is some N ∈ R such that for all natural
numbers n > N , an < m.



(2) Short answer.
(a) Write the negation of the following statement in its simplest form:

For every x ∈ S, there exists a natural number integer j such
that x < j + 3.

There exists x ∈ S such that for every integer j, x ≥ j + 3.

(b) Write the contrapositive of the following statement in its simplest form:
If {an}∞n=1 and {bn}∞n=1 both diverge, then {an+bn}∞n=1 diverges.

If {an+bn}∞n=1 converges, then {an}∞n=1 converges or {bn}∞n=1 converges.



(3) Determine if each of the following statements is TRUE or FALSE, and justify
your choice with a short argument or a counterexample.

(a) Every convergent sequence is a monotone sequence.

False. For example, take { (−1)
n

n }
∞
n=1.

(b) If a2n < 4 and an+1 < an for all n ∈ N, then {an}∞n=1 converges.

True. We have −2 < an < 2 for all n, so the sequence is bounded.
From the hypotheses, it is decreasing, so it converges.



(c) For any open interval S = (a, b) with a < b, there is no smallest irrational
number in S.

True. Suppose there was an open interval (a, b) with a smallest irra-
tional number z. By Density of Irrationals, there is some irrational
number y such that a < y < z. Then y is a smaller irrational number
in (a, b), contradicting the existence of z.

(d) There are sequences {an}∞n=1 and {bn}∞n=1 such that
• {an}∞n=1 converges,
• {bn}∞n=1 diverges, and
• {an + bn}∞n=1 converges.

False. If {an}∞n=1 converges to L and {an+bn}∞n=1 converges to M , then
by our Theorem on limits and algebra, {bn}∞n=1 converges to M − L.



(4) Proofs.

(a) Use the formal definition (and not any theorems) of a sequence to

converge to prove that

{
2 +

(−1)n√
n

}∞
n=1

converges to 2.

Let ε > 0 be arbitrary. Take N = 1
ε2 . Observe that ε2 = 1

N , so

ε = 1√
N

. Let n be an arbitrary natural number larger than N . Then∣∣∣∣2 +
(−1)n√

n
− 2

∣∣∣∣ =

∣∣∣∣(−1)n√
n

∣∣∣∣ =
1√
n
<

1√
N

= ε.

This shows that

{
2 +

(−1)n√
n

}∞
n=1

converges to 2.



(b) Let S be a nonempty bounded above subset of R, and let ` = sup(S).
Define T = {3s | s ∈ S}. Prove that sup(T ) = 3`.

First, we show that 3` is an upper bound for T . Let t ∈ T . We can write
t = 3s for some s ∈ S. Since s ≤ `, we have t = 3s ≤ 3`, so 3` is indeed an
upper bound.

Next, we show that if b is any upper bound for T , then b ≥ `. Let b be an
upper bound for T . This means that b ≥ t for any t ∈ T . Note that b/3 is an
upper bound for S: if s ∈ S, then t = 3s ∈ T , so 3s = t ≤ b, so s ≤ b/3. By
definition of supremum, b/3 ≥ `, but then b ≥ 3`, as required.



Bonus: Prove or disprove: Every convergent sequence of integers converges to an
integer.

Let {an}∞n=1 be a sequence of integers, and suppose that {an}∞n=1 converges to
L. There is a unique integer m such that m ≤ L < m + 1 (by a Theorem in
class, or by common arithmetic knowledge). Suppose that L is not an integer.
Then m < L < m+ 1. Note that there is no integer t such that m < t < m+ 1.
Take ε = min{L−m,m+1−L}, which is strictly positive. There exists N such
that for all natural numbers n > N we have |an − L| < ε. For any such n, we
have

an − L < ε ≤ m + 1− L, so an < m + 1

and
an − L > −ε ≥ −(L−m), so an > m.

But this contradicts that there is no integer t such that m < t < m + 1! This
contradiction shows that L must be an integer.


