Math 325. Exam \#1

(1) Definitions/Theorems
(a) State the definition for a real number b to be a lower bound for a set S of real numbers.

For every $x \in S, b \leq x$.
(b) State the Completeness Axiom for \mathbb{R}.

Every nonempty bounded above subset of \mathbb{R} has a supremem.
(c) State the definition for a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ to diverge to $-\infty$.

For every $m \in \mathbb{R}$, there is some $N \in \mathbb{R}$ such that for all natural numbers $n>N, a_{n}<m$.
(2) Short answer.
(a) Write the negation of the following statement in its simplest form: For every $x \in S$, there exists a natural number integer j such that $x<j+3$.

There exists $x \in S$ such that for every integer $j, x \geq j+3$.
(b) Write the contrapositive of the following statement in its simplest form: If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ both diverge, then $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ diverges.

$$
\text { If }\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty} \text { converges, then }\left\{a_{n}\right\}_{n=1}^{\infty} \text { converges or }\left\{b_{n}\right\}_{n=1}^{\infty} \text { converges. }
$$

(3) Determine if each of the following statements is TRUE or FALSE, and justify your choice with a short argument or a counterexample.
(a) Every convergent sequence is a monotone sequence.

False. For example, take $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$.
(b) If $a_{n}^{2}<4$ and $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$, then $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges.

True. We have $-2<a_{n}<2$ for all n, so the sequence is bounded. From the hypotheses, it is decreasing, so it converges.
(c) For any open interval $S=(a, b)$ with $a<b$, there is no smallest irrational number in S.

True. Suppose there was an open interval (a, b) with a smallest irrational number z. By Density of Irrationals, there is some irrational number y such that $a<y<z$. Then y is a smaller irrational number in (a, b), contradicting the existence of z.
(d) There are sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that

- $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges,
- $\left\{b_{n}\right\}_{n=1}^{\infty}$ diverges, and
- $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ converges.

False. If $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L and $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ converges to M, then by our Theorem on limits and algebra, $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges to $M-L$.
(4) Proofs.
(a) Use the formal definition (and not any theorems) of a sequence to converge to prove that $\left\{2+\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 2 .

Let $\varepsilon>0$ be arbitrary. Take $N=\frac{1}{\varepsilon^{2}}$. Observe that $\varepsilon^{2}=\frac{1}{N}$, so $\varepsilon=\frac{1}{\sqrt{N}}$. Let n be an arbitrary natural number larger than N. Then $\left|2+\frac{(-1)^{n}}{\sqrt{n}}-2\right|=\left|\frac{(-1)^{n}}{\sqrt{n}}\right|=\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\varepsilon$.
This shows that $\left\{2+\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 2 .
(b) Let S be a nonempty bounded above subset of \mathbb{R}, and let $\ell=\sup (S)$. Define $T=\{3 s \mid s \in S\}$. Prove that $\sup (T)=3 \ell$.

First, we show that 3ℓ is an upper bound for T. Let $t \in T$. We can write $t=3 s$ for some $s \in S$. Since $s \leq \ell$, we have $t=3 s \leq 3 \ell$, so 3ℓ is indeed an upper bound.
Next, we show that if b is any upper bound for T, then $b \geq \ell$. Let b be an upper bound for T. This means that $b \geq t$ for any $t \in T$. Note that $b / 3$ is an upper bound for S : if $s \in S$, then $t=3 s \in T$, so $3 s=t \leq b$, so $s \leq b / 3$. By definition of supremum, $b / 3 \geq \ell$, but then $b \geq 3 \ell$, as required.

Bonus: Prove or disprove: Every convergent sequence of integers converges to an integer.

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers, and suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L. There is a unique integer m such that $m \leq L<m+1$ (by a Theorem in class, or by common arithmetic knowledge). Suppose that L is not an integer. Then $m<L<m+1$. Note that there is no integer t such that $m<t<m+1$. Take $\varepsilon=\min \{L-m, m+1-L\}$, which is strictly positive. There exists N such that for all natural numbers $n>N$ we have $\left|a_{n}-L\right|<\varepsilon$. For any such n, we have

$$
a_{n}-L<\varepsilon \leq m+1-L, \quad \text { so } a_{n}<m+1
$$

and

$$
a_{n}-L>-\varepsilon \geq-(L-m), \quad \text { so } a_{n}>m
$$

But this contradicts that there is no integer t such that $m<t<m+1$! This contradiction shows that L must be an integer.

