Math 325. Exam #1

- (1) Definitions/Theorems
 - (a) State the definition for a real number b to be a *lower bound* for a set S of real numbers.

For every $x \in S$, $b \leq x$.

(b) State the Completeness Axiom for \mathbb{R} .

Every nonempty bounded above subset of $\mathbb R$ has a supremem.

(c) State the definition for a sequence $\{a_n\}_{n=1}^{\infty}$ to diverge to $-\infty$.

For every $m \in \mathbb{R}$, there is some $N \in \mathbb{R}$ such that for all natural numbers n > N, $a_n < m$.

(2) Short answer.

(a) Write the negation of the following statement in its simplest form: For every $x \in S$, there exists a natural number integer j such that x < j + 3.

There exists $x \in S$ such that for every integer $j, x \ge j + 3$.

(b) Write the contrapositive of the following statement in its simplest form: If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both diverge, then $\{a_n+b_n\}_{n=1}^{\infty}$ diverges.

If $\{a_n+b_n\}_{n=1}^{\infty}$ converges, then $\{a_n\}_{n=1}^{\infty}$ converges or $\{b_n\}_{n=1}^{\infty}$ converges.

- (3) Determine if each of the following statements is TRUE or FALSE, and justify your choice with a short argument or a counterexample.
 - (a) Every convergent sequence is a monotone sequence.

False. For example, take $\{\frac{(-1)^n}{n}\}_{n=1}^{\infty}$.

(b) If $a_n^2 < 4$ and $a_{n+1} < a_n$ for all $n \in \mathbb{N}$, then $\{a_n\}_{n=1}^{\infty}$ converges.

True. We have $-2 < a_n < 2$ for all n, so the sequence is bounded. From the hypotheses, it is decreasing, so it converges. (c) For any open interval S = (a, b) with a < b, there is no smallest irrational number in S.

True. Suppose there was an open interval (a, b) with a smallest irrational number z. By Density of Irrationals, there is some irrational number y such that a < y < z. Then y is a smaller irrational number in (a, b), contradicting the existence of z.

(d) There are sequences {a_n}[∞]_{n=1} and {b_n}[∞]_{n=1} such that
{a_n}[∞]_{n=1} converges,
{b_n}[∞]_{n=1} diverges, and
{a_n + b_n}[∞]_{n=1} converges.

False. If $\{a_n\}_{n=1}^{\infty}$ converges to L and $\{a_n+b_n\}_{n=1}^{\infty}$ converges to M, then by our Theorem on limits and algebra, $\{b_n\}_{n=1}^{\infty}$ converges to M - L.

(4) Proofs.

(a) Use the formal definition (and not any theorems) of a sequence to converge to prove that $\left\{2 + \frac{(-1)^n}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 2.

Let $\varepsilon > 0$ be arbitrary. Take $N = \frac{1}{\varepsilon^2}$. Observe that $\varepsilon^2 = \frac{1}{N}$, so $\varepsilon = \frac{1}{\sqrt{N}}$. Let *n* be an arbitrary natural number larger than *N*. Then $\left|2 + \frac{(-1)^n}{\sqrt{n}} - 2\right| = \left|\frac{(-1)^n}{\sqrt{n}}\right| = \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} = \varepsilon$. This shows that $\left\{2 + \frac{(-1)^n}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 2.

(b) Let S be a nonempty bounded above subset of \mathbb{R} , and let $\ell = \sup(S)$. Define $T = \{3s \mid s \in S\}$. Prove that $\sup(T) = 3\ell$.

First, we show that 3ℓ is an upper bound for T. Let $t \in T$. We can write t = 3s for some $s \in S$. Since $s \leq \ell$, we have $t = 3s \leq 3\ell$, so 3ℓ is indeed an upper bound.

Next, we show that if b is any upper bound for T, then $b \ge \ell$. Let b be an upper bound for T. This means that $b \ge t$ for any $t \in T$. Note that b/3 is an upper bound for S: if $s \in S$, then $t = 3s \in T$, so $3s = t \le b$, so $s \le b/3$. By definition of supremum, $b/3 \ge \ell$, but then $b \ge 3\ell$, as required.

Bonus: Prove or disprove: Every convergent sequence of integers converges to an integer.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of integers, and suppose that $\{a_n\}_{n=1}^{\infty}$ converges to L. There is a unique integer m such that $m \leq L < m+1$ (by a Theorem in class, or by common arithmetic knowledge). Suppose that L is not an integer. Then m < L < m+1. Note that there is no integer t such that m < t < m+1. Take $\varepsilon = \min\{L-m, m+1-L\}$, which is strictly positive. There exists N such that for all natural numbers n > N we have $|a_n - L| < \varepsilon$. For any such n, we have

$$a_n - L < \varepsilon \le m + 1 - L$$
, so $a_n < m + 1$

and

$$a_n - L > -\varepsilon \ge -(L - m), \text{ so } a_n > m.$$

But this contradicts that there is no integer t such that m < t < m + 1! This contradiction shows that L must be an integer.