(Axiom 1) There are operations + and \cdot defined on \mathbb{R} :

$$
\text { for all } p, q \in \mathbb{R}, \quad p+q \in \mathbb{R} \text { and } p \cdot q \in \mathbb{R} \text {. }
$$

(Axiom 2) Each of + and \cdot is a commutative operation:

$$
\text { for all } p, q \in \mathbb{R}, \quad p+q=q+p \text { and } p \cdot q=q \cdot p \text {. }
$$

(Axiom 3) Each of + and \cdot is an associative operation:

$$
\text { for all } p, q, r \in \mathbb{R}, \quad(p+q)+r=p+(q+r) \text { and }(p \cdot q) \cdot r=p \cdot(q \cdot r) \text {. }
$$

(Axiom 4) The number 0 is an identity element for addition and the number $1(\neq 0)$ is an identity element for multiplication:

$$
\text { for all } p \in \mathbb{R}, \quad 0+p=p \text { and } 1 \cdot p=p
$$

(Axiom 5) The distributive law holds:

$$
\text { for all } p, q, r \in \mathbb{R}, \quad p \cdot(q+r)=p \cdot q+p \cdot r \text {. }
$$

(Axiom 6) Every number has an additive inverse:
for each $p \in \mathbb{R}$, there is some " $-p " \in \mathbb{R}$ such that $p+(-p)=0$.
(Axiom 7) Every nonzero number has a multiplicative inverse: for each $p \in \mathbb{R}, p \neq 0$, there is some " p " " $\in \mathbb{R}$ such that $p \cdot p^{-1}=1$.
(Axiom 8) There is a "total ordering" \leq on \mathbb{R}. This means that
(a) for all $p, q \in \mathbb{R}$, either $p \leq q$ or $q \leq p$.
(b) for all $p, q \in \mathbb{R}$, if $p \leq q$ and $q \leq p$, then $p=q$.
(c) for all $p, q, r \in \mathbb{R}$, if $p \leq q$ and $q \leq r$, then $p \leq r$.
(Axiom 9) The total ordering \leq is compatible with addition:
for all $p, q, r \in \mathbb{R}$, if $p \leq q$ then $p+r \leq q+r$.
(Axiom 10) The total ordering \leq is compatible with multiplication by nonnegative numbers:

$$
\text { for all } p, q, r \in \mathbb{R}, \quad \text { if } p \leq q \text { and } r \geq 0 \text { then } p r \leq q r \text {. }
$$

(COMPleteness axiom) Every nonempty bounded above subset of \mathbb{R} has a supremum.

