ASSIGNMENT \#3

(1) Let R be a commutative ring, and S be a multiplicatively closed subset. Let

$$
F, G: R-\operatorname{Mod} \rightarrow S^{-1} R-\operatorname{Mod}
$$

be the localization functor and the functor of extension of scalars $S^{-1} R \otimes_{R}-$, respectively. Show that F is naturally isomorphic to G.
(2) (a) Show that ${ }^{1}$, for a commutative ring A, a commutative A-algebra R, and any ideal $I \subset A\left[x_{1}, \ldots, x_{n}\right]$, there is a ring isomorphism

$$
R \otimes_{A} \frac{A\left[x_{1}, \ldots, x_{n}\right]}{I} \cong \frac{R\left[x_{1}, \ldots, x_{n}\right]}{I R\left[x_{1}, \ldots, x_{n}\right]}
$$

(b) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is not an integral domain.
(3) Let R be an integral domain. An element m of an R-module M is torsion if there is some $r \neq 0$ such that $r m=0$. An R-module is torsion if every element is torsion.
(a) Show that there is a left exact functor $T: R-\operatorname{Mod} \rightarrow R-\operatorname{Mod}$ that on objects sends a module M to the submodule of M consisting of all its torsion elements.
(b) Let K be the fraction field of R. Show that for every R-module M, there is an isomorphism $T(M) \cong \operatorname{ker}\left(M \otimes_{R} R \xrightarrow{1_{M} \otimes_{i}} M \otimes_{R} K\right)$, where i is the natural inclusion of R into K.
(4) (a) Prove that if A is a divisible abelian group and T is a torsion abelian group (i.e., a torsion \mathbb{Z}-module), then $A \otimes_{\mathbb{Z}} T=0$.
(b) Prove ${ }^{2}$ there does not exist a nonzero (unital) ring R such that the underlying abelian group $(R,+)$ is both torsion and divisible. (So, for example, there is no ring whose underlying abelian group is \mathbb{Q} / \mathbb{Z}.)
(5) Hom.
(a) Let $R=K[x]$ be a polynomial ring over a field K, and let $M=\operatorname{Hom}_{K}(R, K)$. Explicitly describe a nonzero element $m \in M$ such that $x m=m$ under the R-module action on M.
(b) Let $S=K[x, y] /\left(x^{2}, x y, y^{2}\right)$. This is a commutative ring that, as a K-vector space, has $\{1, x, y\}$ as a free basis. Explain how $N=\operatorname{Hom}_{K}(S, S)$ has two possible S-module structures, and show that these module structure are not isomorphic.
(c) Let $D=\mathbb{R}[\partial]$ be a polynomial ring in the indeterminate ∂. Explain why there is a D module action on the power series ring $\mathbb{R} \llbracket x \rrbracket$ given by $\partial \cdot f(x)=\frac{d f(x)}{d x}$, and compute ${ }^{3}$

$$
\operatorname{Hom}_{D}\left(\frac{D}{D(\partial-1)}, \mathbb{R} \llbracket x \rrbracket\right) .
$$

[^0]
[^0]: ${ }^{1}$ You can use that $R \otimes_{A} A\left[x_{1}, \ldots, x_{n}\right] \cong R\left[x_{1}, \ldots, x_{n}\right]$ via the map $r \otimes f(x) \mapsto r f(x)$.
 ${ }^{2}$ Hint: multiplication is biadditive.
 ${ }^{3}$ I.e., explicitly say what its elements are.

