ASSIGNMENT #2

- (1) Opposites: Let R be a ring.
 - (a) Prove that there is an isomorphism¹ $M_n(R^{\text{op}}) \cong M_n(R)^{\text{op}}$.
 - (b) Prove that there is an isomorphism $\operatorname{End}_R(R) \cong R^{\operatorname{op}}$.
- (2) A module is *finitely generated* if it has a finite generating set, and *finitely presented* if it has a finite generating set for which the module of relations is finitely generated. Let

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

be a short exact sequence of R-modules.

- (a) Show that if M' and M'' are finitely generated, then M is finitely generated.
- (b^{*}) Show that if M' and M'' are finitely presented, then M is finitely presented.
- (3) Fix a field K. The collection of pairs (V, W) where $W \subseteq V$ are vector spaces forms a category \mathscr{C} , where the morphisms from $(V, W) \to (V', W')$ are linear transformations $\phi : V \to V'$ such that $\phi(W) \subseteq W'$. There are covariant functors $F, G : \mathscr{C} \to K -$ Vect given by

$$\begin{split} F(V,W) &= V & F(\phi) = \phi \\ G(V,W) &= W \oplus V/W & G(\phi) = \phi|_W \oplus \overline{\phi} \end{split}$$

where $\overline{\phi}: V/W \to V'/W'$ is the induced map $\overline{\phi}(v+W) = \phi(v) + W'$ on the quotient spaces.

- (a) Show that for every $(V, W) \in Ob(\mathscr{C})$, there is an isomorphism of vector spaces $F(V) \cong G(V)$.
- (b) Let $W = K \oplus \{0\} \subseteq V = K^2$, and take $\phi : K^2 \to K^2$ to be the map given by the matrix $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$.

Check that ϕ is a morphism in \mathscr{C} , and compute $F(\phi)$ and $G(\phi)$.

- (c) Show that there is no natural isomorphism² $\eta: F \Rightarrow G$.
- (4) A covariant functor $F: R Mod \rightarrow S Mod$ is *additive* if for every $M, N \in R Mod$, the map

$$\operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{S}(F(M), F(N))$$
$$f \longmapsto F(f)$$

is a homomorphism of abelian groups. Show that if F is an additive covariant functor, and

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

is a split exact sequence, then

$$0 \to F(M') \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(M'') \to 0$$

is $exact^3$.

¹Hint: Your map should involve transposes.

 $^{^2\}mathrm{Moral:}$ Every short exact sequence of vector spaces splits, but not naturally!

 $^{^{3}}$ Moral: Functors (additive or not) between module categories don't always preserve short exact sequences, but (at least additive functors) always preserve *split* exact sequences.

(5) The localization functor:

Let R be a commutative ring. A subset S of R is multiplicatively closed if $1 \in S$ and $s, t \in S \Rightarrow st \in S$. Define a new ring $S^{-1}R$ as follows:

$$S^{-1}R = \left\{\frac{r}{s} \mid r \in R, s \in S\right\} / \sim$$

where ~ is the equivalence relation $\frac{r}{s} \sim \frac{r'}{s'}$ if and only if t(rs' - r's) = 0 for some $t \in S$. This⁴ set is a ring (a fact you need not check) with respect to the operations

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'} \qquad \frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}.$$

For an R-module M define

$$S^{-1}M = \left\{\frac{m}{s} \mid m \in M, s \in S\right\} / \sim$$

where \sim is the equivalence relation $\frac{m}{s} \sim \frac{m'}{s'}$ if and only if t(ms' - m's) = 0 for some $t \in S$. Then $S^{-1}M$ is an $S^{-1}R$ -module (a fact you need not check) via the operations

$$\frac{m}{s} + \frac{m'}{s'} = \frac{ms' + m's}{ss'} \qquad \frac{r}{s} \cdot \frac{m}{s'} = \frac{rm}{ss'}.$$

- (a) Show that there is a functor $S^{-1}: R \mathbf{Mod} \to S^{-1}R \mathbf{Mod}$ that on objects maps $M \mapsto S^{-1}M$ and on morphisms maps $f \mapsto S^{-1}f$ where $(S^{-1}f)(\frac{m}{s}) = \frac{f(m)}{s}$.
- (b) A covariant functor $R \text{Mod} \rightarrow S^{-1}R \text{Mod}$ is *exact* if it is additive and takes short exact sequences to short exact sequences. Show that the localization functor from (a) is exact.
- (6*) (a) We only defined a notion of natural transformation/isomorphism for F, G both covariant or F, G both contravariant. Come up with a definition of natural transformation/isomorphism for F covariant and G contravariant.
 - (b) Show that with this definition, for a field K, the functors $1_{K-\text{vect}}, (-)^* : K \text{vect} \to K \text{vect}$ are still not naturally isomorphic.
 - (c) Let $K \mathbf{inn}$ where
 - objects are finite dimensional K-vector spaces equipped with a nondegenerate⁵ symmetric bilinear form $\langle -, \rangle_V : V \times V \to K$, and the
 - morphisms are linear maps $\phi: V \to W$ such that $\langle v, v' \rangle_V = \langle \phi(v), \phi(v') \rangle_W$. Show that the functors $F, G: K - \operatorname{inn} \to K - \operatorname{vect}$ given by

$$F(V) = V F(\phi) = \phi$$

$$G(V) = V^* G(\phi) = \phi^*$$

are naturally isomorphic.

⁴This generalizes the construction of the fraction field of a domain R, where $S = R \setminus \{0\}$ gives $S^{-1}R = Frac(R)$.

⁵That is, for every $v \in V \setminus \{0\}$, there is some $v' \in V$ such that $\langle v, v' \rangle_V \neq 0$.