Math 325-002 — Problem Set #4 Due: Wednesday, September 22 by 5 pm

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.

- (1) Given any two real numbers x and y, $\max\{x, y\}$ refers to the larger of the two numbers x and y; that is, $\max\{x, y\}$ is x if $x \ge y$ and otherwise it is y. Similarly, $\min\{x, y\}$ refers to the smaller of the two numbers x and y; that is, $\min\{x, y\}$ is x if $x \le y$ and otherwise it is y.
 - (a) Prove that for all real numbers x and y

$$\max\{x, y\} = \frac{x + y + |x - y|}{2}.$$

- (b) Find a similar formula for $\min\{x, y\}$ and prove that your formula is correct.
- (2) Prove, using the formal definition of convergence, that the sequence $\{\frac{1}{\sqrt{n}}\}_{n=1}^{\infty}$ converges to 0. (At the risk of being overly pedantic, for $n \in \mathbb{N}$, by \sqrt{n} we mean the unique positive real number whose square is n. Such a number exists by the Completeness Axiom, which proved in detail in the case n = 2.)
- (3) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences and L be a real number. Suppose that there is some $M \in \mathbb{R}$ such that for all n > M, we have $a_n = b_n$. Prove that $\{a_n\}_{n=1}^{\infty}$ converges to L if and only if $\{b_n\}_{n=1}^{\infty}$ converges to L.
- (4) Do problem #5 on page 91 of the textbook.
- (5) Do problem #6 on page 91 of the textbook.
- (6) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence, and K, L be real numbers. Suppose that for all $n \in \mathbb{N}$, $a_n \ge K$, and that $\{a_n\}_{n=1}^{\infty}$ converges to L. Prove that $L \ge K$.

1