Math 325-002 - Problem Set \#3

Due: Wednesday, September 15 by 5 pm

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3 ". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.
(1) Prove ${ }^{1}$ that if ϵ is any real number such that $\epsilon>0$, then there exists a natural number n such that $0<\frac{1}{n}<\epsilon$.
(2) Let S be the set $\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Prove ${ }^{2}$ that 1 is the supremum (aka least upper bound) of S.
(3) Let r be any real number. Consider the set

$$
S_{r}=\{q \in \mathbb{Q} \mid q<r\}
$$

In words, S_{r} is the set of those rational numbers that are strictly less than r. Prove that the supremum of S_{r} is r.
(4) Read Section 1.7 of the text, and do problems 4 and 7 on pages 65-66.

[^0]
[^0]: ${ }^{1}$ Tip: You will need to use the following fact, proven in lecture: If x is any real number, then there is a natural number n such that $n>x$.
 ${ }^{2}$ Tip: First show 1 is an upper bound, and then use a proof by contradiction. That is, assume b is an upper bound of S such that $b<1$ and proceed to derive a contradiction. The statement proven in the previous exercise might be useful.

