Math 325-002 - Problem Set \#2 Due: Wednesday, September 8 by 5 pm

Instructions: You are encouraged to work together on these problems, but each student should hand in their own final draft, written in a way that indicates their individual understanding of the solutions. Never submit something for grading that you do not completely understand.

If you do work with others, I ask that you write something along the top like "I collaborated with Steven Smale on problems 1 and 3". If you use a reference, indicate so clearly in your solutions. In short, be intellectually honest at all times.

Please write neatly, using complete sentences and correct punctuation. Label the problems clearly.
(1) Assume S is a subset of \mathbb{R} and that T is a subset of S. Prove that if S is bounded above then T is also bounded above.
(2) Prove that if S is a subset of \mathbb{R} is bounded above, then S has infinitely many upper bounds.
(3) Given a subset S of \mathbb{R}, a lower bound for S is a real number z such that $z \leq s$ for all $s \in S$. We say S is bounded below if S has at least one lower bound.

Given a subset S of \mathbb{R}, define a new subset $-S$ by

$$
-S=\{x \in \mathbb{R} \mid x=-s \text { for some } s \in S\}
$$

For example, $-\{-2,-1,1,3\}=\{-3,-1,1,2\}$.
Prove ${ }^{1}$ that S is bounded below if and only if $-S$ is bounded above.
(4) Suppose S is a subset of \mathbb{R}. A real number y is called the infimum (also known as greatest lower bound) of S if

- y is a lower bound for S
- if z is any lower bound for S then $z \leq y$.

Prove ${ }^{2}$ that every nonempty, bounded below subset S of \mathbb{R} has an infimum.
(5) Let S be a subset of \mathbb{R}. An element $y \in S$ is called the minimum element of S if $y \in S$ and y is a lower bound for S.
(a) Show that the open interval $(3,5)$ does not have a minimum element.
(b) Show that if y is a minimum element for a set S of real numbers, then y is the infimum of S.

[^0]
[^0]: ${ }^{1}$ Tip As with any "if and only if" statement, you need to prove two things: (a) Prove that if S is bounded below, then $-S$ is bounded above, and (b) prove that if $-S$ is bounded above, then S is bounded below.
 ${ }^{2}$ Tip: Apply the Completeness Axiom to the subset $-S$ defined as in the previous problem.

