TRUE or FALSE. Justify.

- (1) Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, and $\{c_n\}_{n=1}^{\infty}$ be sequences. The negation of the statement "If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge, then $\{c_n\}_{n=1}^{\infty}$ converges" is "If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge, then $\{c_n\}_{n=1}^{\infty}$ diverges".
- \square (2) The commutative property/axiom of addition says that (x+y)+z=x+(y+z).
- (3) Every nonempty set of real numbers that is bounded above has a maximum element.
- \mathcal{T} (4) If S is a set of real numbers and $\sup(S) \in S$ then $\sup(S)$ is the maximum element of S.
- (5) Every nonempty set of natural numbers that is bounded below has a minimum element.
- (6) The supremum of the set $\{x \in \mathbb{Q} \mid x < \pi\}$ is π .
- (7) A sequence of negative numbers can converge to a positive number.
- (8) Every decreasing sequence is convergent.
- (9) Every convergent sequence is bounded.
- \int (10) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are convergent sequences, then $\{3a_n^2 + a_nb_n 6b_n\}_{n=1}^{\infty}$ is a convergent sequence.
- (11) If f is differentiable on \mathbb{R} , $f'(x) \leq 0$ for all x > 0, and $f(x) \geq -100$ for all x > 0, then the sequence $\{f(n)\}_{n=1}^{\infty}$ converges.
- (12) If for every $\varepsilon > 0$, there is some $N \in \mathbb{R}$ such that $|a_n a_{n+1}| < \varepsilon$ for all n > N, then $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence.
- 7 (13) If $\lim_{x\to -1} f(x) > 5$, then $\exists \delta > 0$ such that f(x) > 5 for all $x \in (-1 \delta, -1 + \delta) \setminus \{-1\}$.
 - (14) If $\lim_{x\to -1} f(x) \ge 5$, then $\exists \delta > 0$ such that $f(x) \ge 5$ for all $x \in (-1-\delta, -1+\delta) \setminus \{-1\}$.
 - (15) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ diverge, then so does $\{a_n+b_n\}_{n=1}^{\infty}$.
 - \bigwedge (16) If $\{a_n\}_{n=1}^{\infty}$ converges and $\{b_n\}_{n=1}^{\infty}$ diverges, then $\{a_n+b_n\}_{n=1}^{\infty}$ diverges.

- (17) We can prove that every polynomial p(x) has a property P by induction on the degree of p(x) by showing that every constant function has property P and then showing that if p(x) has property P then p'(x) has property P.
- (18) If f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing on (a, b).
- (19) If f is strictly decreasing and differentiable on (a, b), then $f'(x) < 0 \ \forall x \in (a, b)$.
- (20) If f, g are continuous on (-7, 7), and g(4) = -1, then $\lim_{x\to 4} (f \circ g)(x) = f(-1)$.
- (21) The supremum of the set $\{x \in \mathbb{Q} \mid x > \pi\}$ is π .
- (22) The sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = n \cdot \sqrt{2}$ the largest integer that is less than $n \cdot \sqrt{2}$ has a convergent subsequence.
- (23) The sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = n \cdot \sqrt{2}$ the largest integer that is less than $n \cdot \sqrt{2}$ has a constant subsequence.
- \vdash (24) If the domain of f is \mathbb{R} , then f is continuous at some point.
- (25) The function $f(x) = |x^2 |x^3 3|$ is continuous on \mathbb{R} .
- (26) If f(x) is continuous at x = a then $\lim_{x\to a} f(x)$ exists.
- (27) If f is continuous on \mathbb{R} and a < b, and y > f(a) > f(b), then there is no $c \in [a, b]$ such that f(c) = y.
- (28) There is a continuous function $f:[2,3] \to \mathbb{R}$ with range [3,5].
- (29) There is a continuous function $f:[2,3] \to \mathbb{R}$ with range (3,5].
- (30) There is a continuous function $f:[2,3] \to \mathbb{R}$ with range $[3,4] \cup [5,6]$.
- (31) The function $f(x) = x^3 2x^2 + 5$ is increasing or decreasing on the interval (1, 2).
- (32) If f(x) is defined and bounded on some interval $(-\delta, \delta)$, then $x^2 f(x)$ is differentiable at x = 0.