Math 314. Week 9 worksheet ($\S 4.7, \S 5.1, \S 5.2$).
An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{v} such that $A \mathbf{v}=\lambda \mathbf{v}$ for some scalar λ; the number λ is the eigenvalue associated to \mathbf{v}. We can think of this as saying that $A \mathbf{v}$ goes in the same (or backwards) direction as \mathbf{v}, with different magnitude, and λ is the factor by which the magnitude changes.

We say that λ is an eigenvalue of A if it is the eigenvalue associated to some eigenvector of A : that is, λ is an eigenvalue of A if $A \mathbf{v}=\lambda \mathbf{v}$ for some nonzero vector \mathbf{v}.
A. Geometric examples of eigenvectors. For each of the following 2×2 matrices, use the description of its associated linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} to find eigenvectors and eigenvalues for the matrix.
(1) $A=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right]$: shrink by $1 / 2$ in the horizontal direction.
(2) $B=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$: reflect over the line $y=-x$.
(3) $C=\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$: rotate by 45° counterclockwise.
(4) $D=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$: horizontal shear.
B. EIgenvectors from pictures. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that transforms the picture on the left to the picture on the right:

Without computing the standard matrix of T, use the picture to find eigenvectors and eigenvalues for it.

The λ eigenspace of an $n \times n$ matrix A is $\operatorname{Null}(A-\lambda I)$, where I is the $n \times n$ identity matrix. This consists of the zero vector 0 and all of the eigenvectors for A with eigenvalue λ. If λ is not an eigenvalue of A, then this is just $\{\mathbf{0}\}$.

The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)$, considered as a polynomial in the variable λ. Its roots are the eigenvalues of A. The multiplicity ${ }^{1}$ of an eigenvalue λ of A is its multiplicity as a root of the characterstic polynomial.

[^0]C. Computing eigenvalues and eigenvectors. Let $A=\left[\begin{array}{cc}3 & -4 \\ -5 & 2\end{array}\right]$.
(1) Compute the characteristic polynomial of A.
(2) Find the roots of the characteristic polynomial of A. These are the eigenvalues of A.
(3) Pick one of your eigenvalues, maybe call it λ_{1}, and compute the λ_{1} eigenspace of A.
(4) Take the other eigenvalue, maybe call it λ_{2}, and compute the λ_{2} eigenspace of A.
D. Eigenvectors of diagonal matrices and triangular matrices.
(1) If a, b, c are three different numbers, find the eigenvalues and eigenvectors of $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$. What are the multiplicities of the eigenvalues? What are the dimensions of the eigenspaces?
(2) If a, b are two different numbers, find the eigenvalues and eigenvectors of $B=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right]$. What are the multiplicities of the eigenvalues? What are the dimensions of the eigenspaces?
(3) If a, b are two different numbers, find the eigenvalues and eigenvectors of $C=\left[\begin{array}{lll}a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right]$. What are the multiplicities of the eigenvalues? What are the dimensions of the eigenspaces?

If V and W are vector spaces, a function $T: V \rightarrow W$ is a linear transformation if

- $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$, and
- $T(c \mathbf{v})=c T(\mathbf{v})$ for all $c \in \mathbb{R}, \mathbf{v} \in V$.

The kernel of a linear transformation $T: V \rightarrow W$ is the set of $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{0}$ (the zero vector in W).

The range of a linear transformation $T: V \rightarrow W$ is the set of all outputs $\mathbf{w}=T(\mathbf{v})$ in W, for all possible inputs $\mathbf{v} \in V$.
E. A LINEAR TRANSFORMATION ON POLYNOMIALS. Let P be the vector space of all polynomials (of any degree). Consider the function $D: P \rightarrow P$ given by $D(f(t))=\frac{d f}{d t}$.
(1) Explain why D is a linear transformation.
(2) What is the kernel of D ?
(3) What is the range of D ?
(4) Is the function $S: P \rightarrow P$ given by $S(f(t))=f(t)^{2}$ a linear transformation?
F. A LINEAR TRANSFORMATION ON mATRICES. Consider the vector space $M_{2 \times 2}$ of 2×2 matrices. Let $A=\left[\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right]$.
(1) Show that the function $F: M_{2 \times 2} \rightarrow M_{2 \times 2}$ given by $F(X)=A X$ is a linear transformation.
$\left(2^{*}\right)$ What is the kernel of F ? Can you find a basis for it?
(3*) What is the range of F ? Can you find a basis for it?

If V is a vector space, and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \ldots, \mathbf{c}_{\mathbf{n}}\right\}$ are two bases for V, then the \mathcal{B}-coordinates and the \mathcal{C}-coordinates of any vector are related by the formula

$$
[\mathbf{v}]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot[\mathbf{v}]_{\mathcal{B}}, \quad \text { where } P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
{\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{\mathbf{n}}\right]_{\mathcal{C}}}
\end{array}\right] .
$$

G. Different coordinates for P_{3}. Consider the two bases $\mathcal{B}=\left\{t^{3}, t^{2}, t, 1\right\}$ and $\mathcal{C}=\left\{t^{3}-1, t^{2}-\right.$ $1, t-1,1\}$ for P_{3}, the vector space of polynomials of degree at most 3 . Find the matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$, and use this to compute $\left[3 t^{3}-4 t^{2}+t-5\right]_{\mathcal{C}}$.

H. Compare with section 4.4.

(1) Convince yourself that the "usual coordinates" on \mathbb{R}^{n} are the same as \mathcal{E}-coordinates, where $\mathcal{E}=$ $\left\{\mathbf{e}_{1}, \ldots, e_{n}\right\}$.
(2) We have seen the matrix $P_{\mathcal{E} \leftarrow \mathcal{B}}$ with a different name in $\S 4.4$. What was it?
(3) If \mathcal{B} and \mathcal{C} are two different bases for a vector space V, how are $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and $P_{\mathcal{B} \leftarrow \mathcal{C}}$ related?
(4) If \mathcal{B} and \mathcal{C} are two different bases for \mathbb{R}^{n}, then how are the matrices $P_{\mathcal{C} \leftarrow \mathcal{B}}, P_{\mathcal{C}}$, and $P_{\mathcal{B}}$ related?

I*. Something about rank. Let A be an $m \times n$ matrix, and B be an $n \times k$ matrix.
(1) Explain why $\operatorname{Col}(A B) \subseteq \operatorname{Col}(A)$.
(2) Explain why $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(3) Explain why $\operatorname{Null}(B) \subseteq \operatorname{Null}(A)$.
(4) Explain why $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(5) Is $\operatorname{rank}(A B)=\min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$?

J*. Something else about bases.
(1) A set of vectors S in a vector space V is a maximal linearly independent set if S is linearly independent, and $S \cup\{\mathbf{v}\}$ is linearly dependent for all $\mathbf{v} \notin V$. Explain why a maximal linearly independent set in V is a basis for V.
(2) A set of vectors S in a vector space V is a minimal spanning set if S spans V, and $S \backslash\{\mathbf{s}\}$ does not span V for all $\mathrm{s} \in S$. Explain why a minimal spanning set in V is a basis for V.

[^0]: ${ }^{1}$ This is also called algebraic multiplicity.

