Math 314. Week 9 worksheet (§4.7, §5.1, §5.2).

An **eigenvector** of an $n \times n$ matrix A is a *nonzero* vector **v** such that $|A\mathbf{v} = \lambda \mathbf{v}|$ for some scalar λ ; the number λ is the **eigenvalue** associated to **v**. We can think of this as saying that A**v** goes in the same (or backwards) direction as **v**, with different magnitude, and λ is the factor by which the magnitude changes.

We say that λ is an **eigenvalue** of A if it is the eigenvalue associated to some eigenvector of A: that is, λ is an eigenvalue of A if $A\mathbf{v} = \lambda \mathbf{v}$ for some nonzero vector \mathbf{v} .

A. GEOMETRIC EXAMPLES OF EIGENVECTORS. For each of the following 2×2 matrices, use the description of its associated linear transformation from \mathbb{R}^2 to \mathbb{R}^2 to find eigenvectors and eigenvalues for the matrix.

(1) $A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$: shrink by 1/2 in the horizontal direction. (2) $B = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$: reflect over the line y = -x. (3) $C = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$: rotate by 45° counterclockwise. (4) $D = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$: horizontal shear.

B. EIGENVECTORS FROM PICTURES. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that transforms the picture on the left to the picture on the right:

Without computing the standard matrix of T, use the picture to find eigenvectors and eigenvalues for it.

The λ eigenspace of an $n \times n$ matrix A is Null $(A - \lambda I)$, where I is the $n \times n$ identity matrix. This consists of the zero vector **0** and all of the eigenvectors for A with eigenvalue λ . If λ is not an eigenvalue of A, then this is just $\{\mathbf{0}\}$.

The **characteristic polynomial** of A is $det(A - \lambda I)$, considered as a polynomial in the variable λ . Its roots are the eigenvalues of A. The **multiplicity**¹ of an eigenvalue λ of A is its multiplicity as a root of the characteristic polynomial.

¹This is also called algebraic multiplicity.

C. COMPUTING EIGENVALUES AND EIGENVECTORS. Let $A = \begin{bmatrix} 3 & -4 \\ -5 & 2 \end{bmatrix}$.

- (1) Compute the characteristic polynomial of A.
- (2) Find the roots of the characteristic polynomial of A. These are the eigenvalues of A.
- (3) Pick one of your eigenvalues, maybe call it λ_1 , and compute the λ_1 eigenspace of A.
- (4) Take the other eigenvalue, maybe call it λ_2 , and compute the λ_2 eigenspace of A.
- D. EIGENVECTORS OF DIAGONAL MATRICES AND TRIANGULAR MATRICES.
 - (1) If a, b, c are three different numbers, find the eigenvalues and eigenvectors of A = \$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}\$\$. What are the multiplicities of the eigenvalues? What are the dimensions of the eigenspaces?
 (2) If a, b are two different numbers, find the eigenvalues and eigenvectors of B = \$\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}\$\$. What are the dimensions of the eigenspaces?
 (2) If a, b are two different numbers, find the eigenvalues and eigenvectors of B = \$\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}\$\$. What are the dimensions of the eigenspaces?
 - (3) If a, b are two different numbers, find the eigenvalues and eigenvectors of $C = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}$. What

are the multiplicities of the eigenvalues? What are the dimensions of the eigenspaces?

If V and W are vector spaces, a function $T: V \to W$ is a **linear transformation** if

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$, and
- $T(c\mathbf{v}) = cT(\mathbf{v})$ for all $c \in \mathbb{R}, \mathbf{v} \in V$.

The **kernel** of a linear transformation $T: V \to W$ is the set of $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{0}$ (the zero vector in W).

The **range** of a linear transformation $T: V \to W$ is the set of all outputs $\mathbf{w} = T(\mathbf{v})$ in W, for all possible inputs $\mathbf{v} \in V$.

E. A LINEAR TRANSFORMATION ON POLYNOMIALS. Let P be the vector space of all polynomials (of any degree). Consider the function $D: P \to P$ given by $D(f(t)) = \frac{df}{dt}$.

- (1) Explain why D is a linear transformation.
- (2) What is the kernel of D?
- (3) What is the range of *D*?
- (4) Is the function $S: P \to P$ given by $S(f(t)) = f(t)^2$ a linear transformation?

F. A LINEAR TRANSFORMATION ON MATRICES. Consider the vector space $M_{2\times 2}$ of 2×2 matrices. Let $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$.

(1) Show that the function $F: M_{2\times 2} \to M_{2\times 2}$ given by F(X) = AX is a linear transformation.

- (2*) What is the kernel of F? Can you find a basis for it?
- (3*) What is the range of F? Can you find a basis for it?

If V is a vector space, and $\mathcal{B} = {\mathbf{b_1}, \dots, \mathbf{b_n}}$ and $\mathcal{C} = {\mathbf{c_1}, \dots, \mathbf{c_n}}$ are two bases for V, then the \mathcal{B} -coordinates and the \mathcal{C} -coordinates of any vector are related by the formula

 $[\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{C}\leftarrow\mathcal{B}}\cdot[\mathbf{v}]_{\mathcal{B}}, \quad \text{where } P_{\mathcal{C}\leftarrow\mathcal{B}} = \left[[\mathbf{b}_1]_{\mathcal{C}} \cdots [\mathbf{b}_n]_{\mathcal{C}} \right].$

G. DIFFERENT COORDINATES FOR P_3 . Consider the two bases $\mathcal{B} = \{t^3, t^2, t, 1\}$ and $\mathcal{C} = \{t^3 - 1, t^2 - 1, t - 1, 1\}$ for P_3 , the vector space of polynomials of degree at most 3. Find the matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$, and use this to compute $[3t^3 - 4t^2 + t - 5]_{\mathcal{C}}$.

H. COMPARE WITH SECTION 4.4.

- (1) Convince yourself that the "usual coordinates" on \mathbb{R}^n are the same as \mathcal{E} -coordinates, where $\mathcal{E} = \{\mathbf{e_1}, \dots, \mathbf{e_n}\}$.
- (2) We have seen the matrix $P_{\mathcal{E}\leftarrow\mathcal{B}}$ with a different name in §4.4. What was it?
- (3) If \mathcal{B} and \mathcal{C} are two different bases for a vector space V, how are $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and $P_{\mathcal{B} \leftarrow \mathcal{C}}$ related?
- (4) If \mathcal{B} and \mathcal{C} are two different bases for \mathbb{R}^n , then how are the matrices $P_{\mathcal{C} \leftarrow \mathcal{B}}$, $P_{\mathcal{C}}$, and $P_{\mathcal{B}}$ related?

I*. SOMETHING ABOUT RANK. Let A be an $m \times n$ matrix, and B be an $n \times k$ matrix.

- (1) Explain why $\operatorname{Col}(AB) \subseteq \operatorname{Col}(A)$.
- (2) Explain why $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$.
- (3) Explain why $Null(B) \subseteq Null(A)$.
- (4) Explain why $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.
- (5) Is $\operatorname{rank}(AB) = \min{\operatorname{rank}(A), \operatorname{rank}(B)}$?
- J*. Something else about bases.
 - (1) A set of vectors S in a vector space V is a maximal linearly independent set if S is linearly independent, and $S \cup \{v\}$ is linearly dependent for all $v \notin V$. Explain why a maximal linearly independent set in V is a basis for V.
 - (2) A set of vectors S in a vector space V is a minimal spanning set if S spans V, and $S \setminus \{s\}$ does not span V for all $s \in S$. Explain why a minimal spanning set in V is a basis for V.