A set of vectors $\{v_1, \ldots, v_t\}$ in a vector space (or subspace) V is a **basis** for V if it spans V and it is linearly independent.

If $\mathcal{B} = {\mathbf{b_1}, \dots, \mathbf{b_n}}$ is a basis for V, then every element of V can be written as a linear combination of these vectors

$$\mathbf{v} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}$$

in exactly one way. We say that the stack of numbers

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the vector of \mathcal{B} -coordinates of \mathbf{v} .

A. COORDINATES FOR P_3

(1) The set $\mathcal{B} = \{t^3, t^2, t, 1\}$ is a basis for P_3 , the vector space of polynomials of degree at most 3. Find the \mathcal{B} -coordinates of the polynomial $p(t) = 2^3 - t^2 + 3$.

(2) If
$$[q(t)]_{\mathcal{B}} = \begin{bmatrix} 7\\ -1\\ 0\\ \pi \end{bmatrix}$$
, what is $q(t)$?

(3) Show that the set of polynomials $C = \{t^3 - 1, t^2 - 1, t - 1, 1\}$ is also a basis for P_3 .

(4) Find
$$q(t)$$
 where $[q(t)]_{\mathcal{C}} = \begin{bmatrix} 7 \\ -1 \\ 0 \\ \pi \end{bmatrix}$

(5) Find
$$[2^3 - t^2 + 3]_{\mathcal{C}}$$
.

B. COORDINATES FOR A SUBSPACE OF \mathbb{R}^3 . Consider the plane *H* given by the equation 3x+7y-5z = 0 in \mathbb{R}^3 .

- (1) H is the null space of a matrix—which matrix?
- (2) Explain in five words or less why H is a subspace of \mathbb{R}^3 .
- (3) Find a basis \mathcal{B} for H.
- (4) Using the basis you found, determine the point on H with \mathcal{B} -coordinates $[1, 1]^T$.
- (5) Using the basis you found, determine the \mathcal{B} -coordinates of $[-1, -1, -2]^T$.
- (6) Using the basis you found, can you find the \mathcal{B} -coordinates of $[0, -1, -2]^T$?

C. DIFFERENT¹ COORDINATES ON \mathbb{R}^3 . Let

$$\mathbf{b_1} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \ \mathbf{b_2} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \ \mathbf{b_3} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \ A = \begin{bmatrix} \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} \end{bmatrix}, \text{ and } \mathcal{C} = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}.$$

- (1) Is C invertible? If so, find the inverse of C.
- (2) Is A invertible? If so, find the inverse of A.
- (3) Is *A* a basis for \mathbb{R}^3 ?

¹ Trick questions ahead!

- (4) Is C a basis for \mathbb{R}^3 ?
- (5) Rewrite the expression $c_1\mathbf{b_1} + c_2\mathbf{b_2} + c_3\mathbf{b_3}$ as a product involving the matrix A and a vector.
- (6) Explain why $A[\mathbf{v}]_{\mathcal{C}} = \mathbf{v}$ for all vectors $\mathbf{v} \in \mathbb{R}^3$.
- (7) If $[\mathbf{v}]_{\mathcal{C}} = [3, -1, -1]^T$, then use the previous part to find \mathbf{v} .
- (8) Use part (2) to find the C-coordinates of the vector $[4, 0, 9]^T$.

D. CHANGE-OF-COORDINATE MATRIX. If $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for \mathbb{R}^n , then $P_{\mathcal{B}} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ is called the \mathcal{B} change-of-coordinates matrix. Explain why $P_{\mathcal{B}} \cdot [\mathbf{x}]_{\mathcal{B}} = \S$ and $P_{\mathcal{B}}^{-1} \cdot \mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$ for all $\mathbf{x} \in \mathbb{R}^n$.

DEFINITION: The **dimension** of a vector space V is the number² of vectors in any basis for V.

FACTS ABOUT DIMENSION: For an n-dimensional vector space V,

- (1) The number of vectors in any basis for V is exactly n.
- (2) Any set of vectors that spans V has at least n elements.
- (3) Any linearly independent set of vectors has at most n elements.
- (4) If a set of n vectors is either linearly independent OR spans V, then it does both.

The dimension of the column space of a matrix is called its **rank**. This number is equal to the number of pivots. Furthermore,

$$\operatorname{rank}(A) + \operatorname{dim} \operatorname{Null}(A) = \# \operatorname{columns} \operatorname{of} A.$$

E. DIMENSIONS OF COLUMN SPACES AND NULL SPACES. Find the dimension of Col(A) and Null(A),

where $A = \begin{bmatrix} 1 & -7 & 8 & 1 & 5 \\ 0 & 1 & 3 & 0 & 8 \\ 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

F. USING THE RANK-NULLITY THEOREM. Let A be a 4×7 matrix.

- (1) If the rank of A is 3, what is the dimension of Null(A)?
- (2) If the dimension of Null(A) is 5, what is the rank of A?
- (3) Can dim Null(A) = 2? Why or why not?
- (4) Suppose that $A\mathbf{x} = \mathbf{b}$ always has a solution. What is dim Null(A)?
- (5) If the rank of A is three, then any set of four of the columns of A is [WHAT]?
- (6) If the rank of A is three, then can a set of three of vectors span the null space of A?
- (7) Suppose that the solution set to $A\mathbf{x} = [3, -1, 2, 6]^T$ is, in parametric vector form,

 $[1,0,1,2,8,9,\pi]^T + r[e,\sqrt{2},0,1,2,3,4]^T + s[5,5,5,0,1,9,9]^T + t[8,6,7,5,3,0,9]^T, r,s,t \in \mathbb{R}.$

What can you say about the rank of A?

(8) Suppose that the solution set to $A\mathbf{x} = [3, -1, 2, 6]^T$ is \emptyset . What can you say about the rank of A?

G. AN INFINITE DIMENSIONAL VECTOR SPACE. Explain why no finite set of polynomials spans the vector space P of polynomials (of any degree). Conclude that P is infinite-dimensional. Now find a basis for P.

²...*if* there is a finite set of vectors that is a basis for V. Otherwise, we say V is **infinite-dimensional**. Also, the dimension of the vector space $\{0\}$ is 0.

H*. EVERYTHING ABOUT DIMENSION, ALMOST. Let V be a vector space. Suppose that the set $\{\mathbf{v_1}, \ldots, \mathbf{v_m}\}$ spans V, and $\{\mathbf{w_1}, \ldots, \mathbf{w_n}\}$ is another set of vectors in V.

(1) Explain why there are a bunch of numbers a_{ij} , where $i = 1, \ldots, m, j = 1, \ldots, n$, such that

$$\mathbf{w}_{1} = a_{11}\mathbf{v}_{1} + \dots + a_{m1}\mathbf{v}_{m}$$
$$\vdots \qquad \vdots \qquad \vdots$$
$$\mathbf{w}_{n} = a_{1n}\mathbf{v}_{1} + \dots + a_{mn}\mathbf{v}_{m}$$

In short, $\mathbf{w}_{\mathbf{j}} = \sum_{i=1}^{m} a_{ij} \mathbf{v}_{\mathbf{i}}$ for every j.

- (2) Put all these numbers a_{ij} into a matrix³ $A = [a_{ij}]$. If n > m, explain why there is a nonzero vector $\mathbf{b} = [b_1, \dots, b_n]^T$ in the null space of A. In short, $\sum_{j=1}^n a_{ij}b_j = 0$ for every i. (3) Continuing the story from the previous part, show that $\sum_{j=1}^n b_j \mathbf{w_j} = \mathbf{0}$.
- (4) Conclude that S is any spanning set in V, and T is any linearly independent set on V, then S has at least as many elements as T.
- (5) Use the last observation to justify facts (1)–(3) about dimension.
- (6) Use part (4) to explain why $\dim(H) \leq \dim(V)$ for a subspace $H \subseteq V$.

I*. SOMETHING ABOUT RANK. Let A be an $m \times n$ matrix, and B be an $n \times k$ matrix.

- (1) Explain why $\operatorname{Col}(AB) \subset \operatorname{Col}(A)$.
- (2) Explain why rank $(AB) \leq \operatorname{rank}(A)$.
- (3) Explain why $Null(B) \subset Null(A)$.
- (4) Explain why $\operatorname{rank}(AB) < \operatorname{rank}(B)$.
- (5) Is $rank(AB) = min\{rank(A), rank(B)\}$?

J*. Something else about bases.

- (1) A set of vectors S in a vector space V is a maximal linearly independent set if S is linearly independent, and $S \cup \{v\}$ is linearly dependent for all $v \notin V$. Explain why a maximal linearly independent set in V is a basis for V.
- (2) A set of vectors S in a vector space V is a minimal spanning set if S is spans V, and $S \setminus \{s\}$ does not span V for all $s \in S$. Explain why a minimal spanning set in V is a basis for V.

³Beware of the numbering: if you take the numbers in the same relative places as in the equations above, then A is the transpose of that.