Math 314. Week 8 worksheet $(\S 4.4, \S 4.5, \S 4.6)$.

A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ in a vector space (or subspace) V is a basis for V if it spans V and it is linearly independent.
If $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for V, then every element of V can be written as a linear combination of these vectors

$$
\mathbf{v}=c_{1} \mathbf{b}_{\mathbf{1}}+\cdots+c_{n} \mathbf{b}_{\mathbf{n}}
$$

in exactly one way. We say that the stack of numbers

$$
[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

is the vector of \mathcal{B}-coordinates of \mathbf{v}.

A. Coordinates for P_{3}

(1) The set $\mathcal{B}=\left\{t^{3}, t^{2}, t, 1\right\}$ is a basis for P_{3}, the vector space of polynomials of degree at most 3 . Find the \mathcal{B}-coordinates of the polynomial $p(t)=2^{3}-t^{2}+3$.
(2) If $[q(t)]_{\mathcal{B}}=\left[\begin{array}{c}7 \\ -1 \\ 0 \\ \pi\end{array}\right]$, what is $q(t)$?
(3) Show that the set of polynomials $\mathcal{C}=\left\{t^{3}-1, t^{2}-1, t-1,1\right\}$ is also a basis for P_{3}.
(4) Find $q(t)$ where $[q(t)]_{\mathcal{C}}=\left[\begin{array}{c}7 \\ -1 \\ 0 \\ \pi\end{array}\right]$.
(5) Find $\left[2^{3}-t^{2}+3\right]_{\mathcal{C}}$.
B. COORDINATES FOR A SUBSPACE OF \mathbb{R}^{3}. Consider the plane H given by the equation $3 x+7 y-5 z=0$ in \mathbb{R}^{3}.
(1) H is the null space of a matrix-which matrix?
(2) Explain in five words or less why H is a subspace of \mathbb{R}^{3}.
(3) Find a basis \mathcal{B} for H.
(4) Using the basis you found, determine the point on H with \mathcal{B}-coordinates $[1,1]^{T}$.
(5) Using the basis you found, determine the \mathcal{B}-coordinates of $[-1,-1,-2]^{T}$.
(6) Using the basis you found, can you find the \mathcal{B}-coordinates of $[0,-1,-2]^{T}$?
C. DIFFERENT ${ }^{1}$ COORDINATES ON \mathbb{R}^{3}. Let

$$
\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right], \mathbf{b}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \mathbf{b}_{\mathbf{3}}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], A=\left[\begin{array}{lll}
\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}} & \mathbf{b}_{3}
\end{array}\right], \text { and } \mathcal{C}=\left\{\mathbf{b}_{1}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}\right\}
$$

(1) Is \mathcal{C} invertible? If so, find the inverse of \mathcal{C}.
(2) Is A invertible? If so, find the inverse of A.
(3) Is A a basis for \mathbb{R}^{3} ?

[^0](4) Is \mathcal{C} a basis for \mathbb{R}^{3} ?
(5) Rewrite the expression $c_{1} \mathbf{b}_{\mathbf{1}}+c_{2} \mathbf{b}_{\mathbf{2}}+c_{3} \mathbf{b}_{\mathbf{3}}$ as a product involving the matrix A and a vector.
(6) Explain why $A[\mathbf{v}]_{\mathcal{C}}=\mathbf{v}$ for all vectors $\mathbf{v} \in \mathbb{R}^{3}$.
(7) If $[\mathbf{v}]_{\mathcal{C}}=[3,-1,-1]^{T}$, then use the previous part to find \mathbf{v}.
(8) Use part (2) to find the \mathcal{C}-coordinates of the vector $[4,0,9]^{T}$.
D. ChANGE-OF-COORDINATE MATRIX. If $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for \mathbb{R}^{n}, then $P_{\mathcal{B}}=\left[\mathbf{b}_{\mathbf{1}} \cdots \mathbf{b}_{\mathbf{n}}\right]$ is called the \mathcal{B} change-of-coordinates matrix. Explain why $P_{\mathcal{B}} \cdot[\mathbf{x}]_{\mathcal{B}}=\S$ and $P_{\mathcal{B}}^{-1} \cdot \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$ for all $\mathrm{x} \in \mathbb{R}^{n}$.

DEfinition: The dimension of a vector space V is the number ${ }^{2}$ of vectors in any basis for V.
Facts about dimension: For an n-dimensional vector space V,
(1) The number of vectors in any basis for V is exactly n.
(2) Any set of vectors that spans V has at least n elements.
(3) Any linearly independent set of vectors has at most n elements.
(4) If a set of n vectors is either linearly independent OR spans V, then it does both.

The dimension of the column space of a matrix is called its rank. This number is equal to the number of pivots. Furthermore,

$$
\operatorname{rank}(A)+\operatorname{dim} \operatorname{Null}(A)=\# \text { columns of } A
$$

E. Dimensions of column spaces and null spaces. Find the dimension of $\operatorname{Col}(A)$ and $\operatorname{Null}(A)$, where $A=\left[\begin{array}{ccccc}1 & -7 & 8 & 1 & 5 \\ 0 & 1 & 3 & 0 & 8 \\ 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
F. USING THE RANK-NULLITY THEOREM. Let A be a 4×7 matrix.
(1) If the rank of A is 3 , what is the dimension of $\operatorname{Null}(A)$?
(2) If the dimension of $\operatorname{Null}(A)$ is 5 , what is the rank of A ?
(3) Can $\operatorname{dim} \operatorname{Null}(A)=2$? Why or why not?
(4) Suppose that $A \mathbf{x}=\mathbf{b}$ always has a solution. What is $\operatorname{dim} \operatorname{Null}(A)$?
(5) If the rank of A is three, then any set of four of the columns of A is [WHAT]?
(6) If the rank of A is three, then can a set of three of vectors span the null space of A ?
(7) Suppose that the solution set to $A \mathrm{x}=[3,-1,2,6]^{T}$ is, in parametric vector form,
$[1,0,1,2,8,9, \pi]^{T}+r[e, \sqrt{2}, 0,1,2,3,4]^{T}+s[5,5,5,0,1,9,9]^{T}+t[8,6,7,5,3,0,9]^{T}, r, s, t \in \mathbb{R}$.
What can you say about the rank of A ?
(8) Suppose that the solution set to $A \mathbf{x}=[3,-1,2,6]^{T}$ is \varnothing. What can you say about the rank of A ?
G. An infinite dimensional vector space. Explain why no finite set of polynomials spans the vector space P of polynomials (of any degree). Conclude that P is infinite-dimensional. Now find a basis for P.

[^1]H^{*}. Everything about dimension, almost. Let V be a vector space. Suppose that the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ spans V, and $\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ is another set of vectors in V.
(1) Explain why there are a bunch of numbers $a_{i j}$, where $i=1, \ldots, m, j=1, \ldots, n$, such that
 In short, $\mathbf{w}_{\mathbf{j}}=\sum_{i=1}^{m} a_{i j} \mathbf{v}_{\mathbf{i}}$ for every j.
(2) Put all these numbers $a_{i j}$ into a matrix ${ }^{3} A=\left[a_{i j}\right]$. If $n>m$, explain why there is a nonzero vector $\mathbf{b}=\left[b_{1}, \ldots, b_{n}\right]^{T}$ in the null space of A. In short, $\sum_{j=1}^{n} a_{i j} b_{j}=0$ for every i.
(3) Continuing the story from the previous part, show that $\sum_{j=1}^{n} b_{j} \mathbf{w}_{\mathbf{j}}=\mathbf{0}$.
(4) Conclude that S is any spanning set in V, and T is any linearly independent set on V, then S has at least as many elements as T.
(5) Use the last observation to justify facts (1)-(3) about dimension.
(6) Use part (4) to explain why $\operatorname{dim}(H) \leq \operatorname{dim}(V)$ for a subspace $H \subseteq V$.

I*. Something about rank. Let A be an $m \times n$ matrix, and B be an $n \times k$ matrix.
(1) Explain why $\operatorname{Col}(A B) \subseteq \operatorname{Col}(A)$.
(2) Explain why $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(3) Explain why $\operatorname{Null}(B) \subseteq \operatorname{Null}(A)$.
(4) Explain why $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(5) Is $\operatorname{rank}(A B)=\min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$?

J*. Something else about bases.
(1) A set of vectors S in a vector space V is a maximal linearly independent set if S is linearly independent, and $S \cup\{\mathbf{v}\}$ is linearly dependent for all $\mathbf{v} \notin V$. Explain why a maximal linearly independent set in V is a basis for V.
(2) A set of vectors S in a vector space V is a minimal spanning set if S is spans V, and $S \backslash\{\mathbf{s}\}$ does not span V for all $\mathrm{s} \in S$. Explain why a minimal spanning set in V is a basis for V.

[^2]
[^0]: ${ }^{1}$ Trick questions ahead!

[^1]: ${ }^{2} \ldots$ if there is a finite set of vectors that is a basis for V. Otherwise, we say V is infinite-dimensional. Also, the dimension of the vector space $\{0\}$ is 0 .

[^2]: ${ }^{3}$ Beware of the numbering: if you take the numbers in the same relative places as in the equations above, then A is the transpose of that.

