A vector space is a set V with two operations

vector addition $+: V \times V \to V$ (vector + vector = vector) scalar multiplication $\cdot: \mathbb{R} \times V \to V$ (scalar + vector = vector),

that satisfy a bunch of reasonable conditions. To note a couple:

- we can add any two "vectors" $\mathbf{v}, \mathbf{w} \in V$, and the result $\mathbf{v} + \mathbf{w}$ is always a "vector" in V.
- There is a zero "vector," that we write as $\mathbf{0} \in V$, such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in V$.

A subspace of a vector space V is a subset $H \subseteq V$ such that

(1) $\mathbf{0} \in H$ the zero vector of V is an element of H(2) $\mathbf{v}, \mathbf{w} \in H \Rightarrow \mathbf{v} + \mathbf{w} \in H$ *H* is *closed under addition*

(3) $c \in \mathbb{R}, \mathbf{v} \in H \Rightarrow c\mathbf{v} \in H$ H is closed under calar multiplication.

A subspace of a vector space is a vector space itself!

The span of a set of vectors $\{v_1, \ldots, v_t\}$ in a vector space V is

Span{ $\mathbf{v_1}, \dots, \mathbf{v_t}$ } = set of all linear combinations of $\mathbf{v_1}, \dots, \mathbf{v_t}$ } = { $c_1\mathbf{v_1} + \dots + c_t\mathbf{v_t} \mid c_1, \dots, c_t \in \mathbb{R}$ }.

This is always a subspace of V (maybe all of V, maybe smaller).

A. POLYNOMIALS OF DEGREE AT MOST n. Let P_n be the set of polynomials (with variable t) of degree at most n. This is a vector space. The "vectors" are polynomials.

- (1) Convince yourself that you can add any two elements of P_n and you always get another element of P_n . Likewise, Convince yourself that you can multiply any element of P_n by a scalar and you always get another element of P_n .
- (2) What is the zero "vector" in P_n ?
- (3) Is the set of $p(t) \in P_n$ such that p(0) = 1 a subspace of P_n ?
- (4) Is the set of $p(t) \in P_n$ such that p(1) = 0 a subspace of P_n ?
- B. MATRICES.
 - (1) Consider the set of all matrices of all sizes. Explain why this is definitely not a vector space.¹
 - (2) The set of all 2×2 matrices is a vector space. What is the zero vector in this vector space?
 - (3) Describe Span $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.
 - (4) Explain why the set of diagonal matrices $\begin{bmatrix} \star & 0 \\ 0 & \star \end{bmatrix}$ is a subspace of the vector space of 2×2 matrices.
- C. Subspaces of \mathbb{R}^2 .

(1) Is the upper half plane $\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \ge 0 \right\}$ a subspace of \mathbb{R}^2 ?

(2) Show that the line y = 2x is equal to $\operatorname{Span}\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$. Conclude that this line is a subspace of \mathbb{R}^2 .

¹Hint: Can you add two matrices of different sizes together?

A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ in a vector space (or subspace) V spans V if $\operatorname{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_t\} = V$; equivalently, *every* element of V is a linear combination of v_1, \ldots, v_t .

A set of vectors $\{v_1, \ldots, v_t\}$ in a vector space (or subspace) V is **linearly independent** if the only solution of

 $c_1 \mathbf{v_1} + \dots + c_t \mathbf{v_t} = \mathbf{0}$ is $c_1 = \dots = c_t = 0$.

A set of vectors $\{v_1, \ldots, v_t\}$ in a vector space (or subspace) V is a **basis** for V if is spans V and it is linearly independent.

D. POLYNOMIALS OF DEGREE AT MOST 3. Let P_2 be the set of polynomials (with variable t) of degree at most 2. This is a vector space. Let $S = \{1, t, t^2\}$. This is a set of three particular polynomials.

- (1) Show that S spans P_2 . This means: show that² any polynomial in P_2 is a linear combination of $1, t, t^2$.
- (2) Show that S is linearly independent. This means: show that 2 if $c_1 \cdot 1 + c_2 \cdot t + c_3 \cdot t^2$ equals the zero polynomial, then $c_1 = c_2 = c_3 = 0$.
- (3) Conclude that S is a basis for P_2 .

E. 2×2 matrices.

- (1) Show that $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for the vector space of 2 × 2 matrices.
- (2) Find a basis for the subspace consisting of diagonal matrices.

F. BASES OF \mathbb{R}^3 .

- (1) Convince yourself that $\{e_1, e_2, e_3\}$ is a basis³ of \mathbb{R}^3 .
- (2) Consider the set $\left\{ \begin{bmatrix} 3\\0\\0 \end{bmatrix}, \begin{bmatrix} -7\\5\\0 \end{bmatrix}, \begin{bmatrix} 5\\2\\1 \end{bmatrix} \right\}$. Notice that when we put them together in a matrix, that

matrix is in echelon form. Why does this set span \mathbb{R}^3 ? Why is this set linearly independent?

Conclude it is another basis for \mathbb{R}^3 . (3) The matrix $A = \begin{bmatrix} -1 & 2 & 6 \\ 4 & -2 & 7 \\ 3 & 4 & -3 \end{bmatrix}$ has RREF $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Does the set of columns of A form a basis of $\mathbb{R}^{3?}$

If A is an $m \times n$ matrix,

- The null space of A is the solution set of $A\mathbf{x} = \mathbf{0}$. It is a subspace of \mathbb{R}^n .
- The column space of A is the span of the columns of A; equivalently, the set of all vectors b of the form $\mathbf{b} = A\mathbf{x}$ for all possible \mathbf{x} . It is a subspace of \mathbb{R}^m .

To find a basis for Null(A), solve $A\mathbf{x} = \mathbf{0}$, write it in parametric vector form, and take the set of vectors that you use as a basis.

To find a basis for Col(A), row reduce A to determine which columns are pivot columns; take the set of columns in A that are pivot columns as a basis.

²Don't overthink this. This is quick.

³It is called the **standard basis** of \mathbb{R}^3 .

G. BASES FOR A NULL SPACE AND A COLUMN SPACE.

Let
$$A = \begin{bmatrix} 2 & 3 & 2 & 1 & 2 \\ -1 & 1 & 4 & 0 & 2 \\ 1 & 0 & -2 & 3 & -4 \end{bmatrix}$$
. The RREF of A is $\begin{bmatrix} 1 & 0 & -2 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$.

- (1) Find the general solution to the equation $A\mathbf{x} = \mathbf{0}$.
- (2) Write your solution from the previous part as a vector in ℝ⁵ (where the entries involve the free variables x₃ and x₅), and then write that vector as x₃**v**+x₅**w** (where **v** and **w** just have numbers). A basis for Null(A) is {**v**, **w**}.
- (3) Which columns of A are pivot columns? Put them in a set; this is a basis for Col(A).
- H*. SUBSPACES OF P_3 . Consider the vector space P_4 of polynomials of degree at most three.
 - (1) Let H be the set of polynomials that have both -1 and 1 as roots. Show that H is a subspace of P_3 .
 - (2) Find a basis for H.
- I*. SUBSPACES.
 - (1) Show that if H and K are two subspaces of V, then $H \cap K$ is a subspace of V.
 - (2) If H and K are two subspaces of V, is $H \cup K$ a subspace of V?
 - (3) Show that if H and K are two subspaces of V, then $H + K = \{h + k \mid h \in H, k \in K\}$ is a subspace of V.
 - (4) If H is a subspace of \mathbb{R}^n , S is any basis for H, and T is any basis for \mathbb{R}^n , is $S \subseteq T$ always?
 - (5) If H is a subspace of \mathbb{R}^n , and S is any basis for H, can you find a basis T for \mathbb{R}^n that contains S?
- J*. SUBSPACES OF $M_{2\times 2}$. Consider the vector space $M_{2\times 2}$ of 2×2 matrices.
 - (1) Which of the following are subspaces of $M_{2\times 2}$:
 - (a) The set of matrices with $A = A^T$.
 - (b) The set of all singular matrices A.
 - (c) The set of matrices A with $A^2 = 0$.
 - (d) The set of matrices with $A = -A^T$.
 - (2) For each of the above that are subspaces, find a basis.