Math 314. Week 7 worksheet ($\S 4.1, \S 4.2, \S 4.3$).

A vector space is a set V with two operations

$$
\begin{aligned}
\text { vector addition }+: V \times V \rightarrow V & & \text { (vector }+ \text { vector } & =\text { vector }) \\
\text { scalar multiplication } \cdot: \mathbb{R} \times V & \rightarrow V & (\text { scalar }+ \text { vector } & =\text { vector }),
\end{aligned}
$$

that satisfy a bunch of reasonable conditions. To note a couple:

- we can add any two "vectors" $\mathbf{v}, \mathbf{w} \in V$, and the result $\mathbf{v}+\mathbf{w}$ is always a "vector" in V.
- There is a zero "vector," that we write as $\mathbf{0} \in V$, such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all $\mathbf{v} \in V$.

A subspace of a vector space V is a subset $H \subseteq V$ such that
(1) $\mathbf{0} \in H \quad$ the zero vector of V is an element of H
(2) $\mathbf{v}, \mathbf{w} \in H \Rightarrow \mathbf{v}+\mathbf{w} \in H \quad H$ is closed under addition
(3) $c \in \mathbb{R}, \mathbf{v} \in H \Rightarrow c \mathbf{v} \in H \quad H$ is closed under scalar multiplication.

A subspace of a vector space is a vector space itself!
The span of a set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ in a vector space V is

$$
\begin{aligned}
\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\} & \left.=\text { set of all linear combinations of } \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\} \\
& =\left\{c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}} \mid c_{1}, \ldots, c_{t} \in \mathbb{R}\right\} .
\end{aligned}
$$

This is always a subspace of V (maybe all of V, maybe smaller).
A. Polynomials of degree at most n. Let P_{n} be the set of polynomials (with variable t) of degree at most n. This is a vector space. The "vectors" are polynomials.
(1) Convince yourself that you can add any two elements of P_{n} and you always get another element of P_{n}. Likewise, Convince yourself that you can multiply any element of P_{n} by a scalar and you always get another element of P_{n}.
(2) What is the zero "vector" in P_{n} ?
(3) Is the set of $p(t) \in P_{n}$ such that $p(0)=1$ a subspace of P_{n} ?
(4) Is the set of $p(t) \in P_{n}$ such that $p(1)=0$ a subspace of P_{n} ?

B. Matrices.

(1) Consider the set of all matrices of all sizes. Explain why this is definitely not a vector space. ${ }^{1}$
(2) The set of all 2×2 matrices is a vector space. What is the zero vector in this vector space?
(3) Describe Span $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
(4) Explain why the set of diagonal matrices $\left[\begin{array}{cc}\star & 0 \\ 0 & \star\end{array}\right]$ is a subspace of the vector space of 2×2 matrices.
C. SUBSPACES OF \mathbb{R}^{2}.
(1) Is the upper half plane $\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \geq 0\right\}$ a subspace of \mathbb{R}^{2} ?
(2) Show that the line $y=2 x$ is equal to $\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$. Conclude that this line is a subspace of \mathbb{R}^{2}.

[^0]A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ in a vector space (or subspace) V spans V if $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}=V$; equivalently, every element of V is a linear combination of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}$.

A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ in a vector space (or subspace) V is linearly independent if the only solution of
$c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}=\mathbf{0}$ is $c_{1}=\cdots=c_{t}=0$.
A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ in a vector space (or subspace) V is a basis for V if is spans V and it is linearly independent.
D. Polynomials of degree at most 3. Let P_{2} be the set of polynomials (with variable t) of degree at most 2 . This is a vector space. Let $S=\left\{1, t, t^{2}\right\}$. This is a set of three particular polynomials.
(1) Show that S spans P_{2}. This means: show that ${ }^{2}$ any polynomial in P_{2} is a linear combination of $1, t, t^{2}$.
(2) Show that S is linearly independent. This means: show that ${ }^{2}$ if $c_{1} \cdot 1+c_{2} \cdot t+c_{3} \cdot t^{2}$ equals the zero polynomial, then $c_{1}=c_{2}=c_{3}=0$.
(3) Conclude that S is a basis for P_{2}.
E. 2×2 MATRICES.
(1) Show that $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis for the vector space of 2×2 matrices.
(2) Find a basis for the subspace consisting of diagonal matrices.
F. BASES OF \mathbb{R}^{3}.
(1) Convince yourself that $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis 3 of \mathbb{R}^{3}.
(2) Consider the set $\left\{\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-7 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right]\right\}$. Notice that when we put them together in a matrix, that matrix is in echelon form. Why does this set span \mathbb{R}^{3} ? Why is this set linearly independent? Conclude it is another basis for \mathbb{R}^{3}.
(3) The matrix $A=\left[\begin{array}{ccc}-1 & 2 & 6 \\ 4 & -2 & 7 \\ 3 & 4 & -3\end{array}\right]$ has RREF $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Does the set of columns of A form a basis of \mathbb{R}^{3} ?

If A is an $m \times n$ matrix,

- The null space of A is the solution set of $A \mathbf{x}=\mathbf{0}$. It is a subspace of \mathbb{R}^{n}.
- The column space of A is the span of the columns of A; equivalently, the set of all vectors \mathbf{b} of the form $\mathbf{b}=A \mathbf{x}$ for all possible \mathbf{x}. It is a subspace of \mathbb{R}^{m}.

To find a basis for $\operatorname{Null}(A)$, solve $A \mathbf{x}=\mathbf{0}$, write it in parametric vector form, and take the set of vectors that you use as a basis.

To find a basis for $\operatorname{Col}(A)$, row reduce A to determine which columns are pivot columns; take the set of columns in A that are pivot columns as a basis.

[^1]G. BASES FOR A NULL SPACE AND A COLUMN SPACE.

Let $A=\left[\begin{array}{ccccc}2 & 3 & 2 & 1 & 2 \\ -1 & 1 & 4 & 0 & 2 \\ 1 & 0 & -2 & 3 & -4\end{array}\right]$. The RREF of A is $\left[\begin{array}{ccccc}1 & 0 & -2 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$.
(1) Find the general solution to the equation $A \mathrm{x}=0$.
(2) Write your solution from the previous part as a vector in \mathbb{R}^{5} (where the entries involve the free variables x_{3} and x_{5}), and then write that vector as $x_{3} \mathbf{v}+x_{5} \mathbf{w}$ (where \mathbf{v} and \mathbf{w} just have numbers). A basis for $\operatorname{Null}(A)$ is $\{\mathbf{v}, \mathbf{w}\}$.
(3) Which columns of A are pivot columns? Put them in a set; this is a basis for $\operatorname{Col}(A)$.
H^{*}. Subspaces of P_{3}. Consider the vector space P_{4} of polynomials of degree at most three.
(1) Let H be the set of polynomials that have both -1 and 1 as roots. Show that H is a subspace of P_{3}.
(2) Find a basis for H.

I*. Subspaces.

(1) Show that if H and K are two subspaces of V, then $H \cap K$ is a subspace of V.
(2) If H and K are two subspaces of V, is $H \cup K$ a subspace of V ?
(3) Show that if H and K are two subspaces of V, then $H+K=\{h+k \mid h \in H, k \in K\}$ is a subspace of V.
(4) If H is a subspace of \mathbb{R}^{n}, S is any basis for H, and T is any basis for \mathbb{R}^{n}, is $S \subseteq T$ always?
(5) If H is a subspace of \mathbb{R}^{n}, and S is any basis for H, can you find a basis T for \mathbb{R}^{n} that contains S ?

J*. Subspaces of $M_{2 \times 2}$. Consider the vector space $M_{2 \times 2}$ of 2×2 matrices.
(1) Which of the following are subspaces of $M_{2 \times 2}$:
(a) The set of matrices with $A=A^{T}$.
(b) The set of all singular matrices A.
(c) The set of matrices A with $A^{2}=0$.
(d) The set of matrices with $A=-A^{T}$.
(2) For each of the above that are subspaces, find a basis.

[^0]: ${ }^{1}$ Hint: Can you add two matrices of different sizes together?

[^1]: ${ }^{2}$ Don't overthink this. This is quick.
 ${ }^{3}$ It is called the standard basis of \mathbb{R}^{3}.

