Definition: A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if, for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all $c \in \mathbb{R}$,
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$, and
(2) $T(c \mathbf{u})=c T(\mathbf{u})$.

If T is a linear transformation, then

$$
T\left(c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}\right)=c_{1} T\left(\mathbf{v}_{\mathbf{1}}\right)+\cdots+c_{t} T\left(\mathbf{v}_{\mathbf{t}}\right) \text { for all } \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}} \in \mathbb{R}^{n}, \text { and all } c_{1}, \ldots, c_{t} \in \mathbb{R} .
$$

NOTATION: $\mathbf{e}_{\mathbf{i}}$ denotes the vector with 1 in position i and 0 in every other position. It is sometimes called the i-th standard vector.

THEOREM: If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{lll}T\left(\mathbf{e}_{\mathbf{1}}\right) & \cdots & T\left(\mathbf{e}_{\mathbf{n}}\right)\end{array}\right]$. This matrix A is called the standard matrix of T.

A. FAMILIAR LINEAR TRANSFORMATIONS IN \mathbb{R}^{2}. For each of the following linear transformations, draw the image of the picture above under the transformation, and find the standard matrix.
(1) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "rotate 90 degrees clockwise around the origin."
(2) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "stretch in the vertical direction by a factor of 2 ."
(3) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "shrink in the horizontal direction by a factor of 2 ."
(4) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "reflect over the x-axis."
(5) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "project onto the x-axis."
B. More matrix transformations. For each ${ }^{1}$ of the following matrices A, consider the linear transformation $T(\mathbf{x})=A \mathbf{x}$: draw $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)$, and the image of the picture above under T.
(1) $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$.
(2) $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$.
(3) $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$.

[^0]Definition: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function.

- The domain of T is \mathbb{R}^{n}.
- The codomain of T is \mathbb{R}^{m}.
- The range of T is the set of all $T(\mathbf{p})$ for all input values \mathbf{p}.
- T is one-to-one if $\mathbf{x} \neq \mathbf{y}$ (in the domain) implies $T(\mathbf{x}) \neq T(\mathbf{y})$ (in the codomain).
- T is onto if for any \mathbf{b} in the codomain, there is some \mathbf{x} in the domain such that $T(\mathbf{x})=\mathbf{b}$.

Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be its standard matrix. The following are equivalent:

- T is onto.
- $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{m}$.
- The columns of A span \mathbb{R}^{m}.
- Any echelon matrix row equivalent to A has a pivot in every row (m pivots).

THEOREM: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be its standard matrix. The following are equivalent:

- T is one-to-one.
- $A \mathbf{x}=\mathbf{b}$ has at most one solution for every $\mathbf{b} \in \mathbb{R}^{m}$.
- The columns of A are linearly independent.
- Any echelon matrix row equivalent to A has a pivot in every column (n pivots).
C. Rotation in \mathbb{R}^{2}, again. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "rotate 90 degrees clockwise around the origin."
(1) What are the domain and codomain of T ?
(2) Draw the vector $\mathbf{b}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Can you find some vector \mathbf{p} such that $T(\mathbf{p})=\mathbf{b}$?
(3) Can any point $\mathbf{b} \in \mathbb{R}^{2}$ be written as $T(\mathbf{p})$ for some \mathbf{p} ? What does that say about T in terms of the definitions above?
(4) If $\mathbf{x} \neq \mathbf{y}$, can $T(\mathbf{x})=T(\mathbf{y})$? What does that say about T in terms of the definitions above?
D. Projection onto x-axis, again. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by "project onto the x-axis."
(1) What are the domain and codomain of T ?
(2) Find a vector \mathbf{b} that is not in the range of T. Is T onto?
(3) Find two vectors $\mathbf{p} \neq \mathbf{q}$ such that $T(\mathbf{p})=T(\mathbf{q})$. Is T one-to-one?
E. ANOTHER LINEAR TRANSFORMATION. Consider the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ with standard matrix

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 3 & -4 & 5 \\
0 & 2 & 1 & 0 & 3 \\
5 & -5 & 15 & -19 & 30 \\
2 & 0 & 7 & -9 & 14
\end{array}\right]
$$

(1) What are the domain and codomain of T ?
(2) Is T one-to-one? Is T onto?
(3) If $\mathbf{b} \in \mathbb{R}^{4}$, but you don't know which vector, what can you say about the solution set of $A \mathbf{x}=\mathbf{b}$?

DEFINITION: The product of the matrices A and $B=\left[\begin{array}{lll}\mathbf{b}_{\mathbf{1}} & \cdots & \mathbf{b}_{\mathbf{n}}\end{array}\right]$, is $A B=\left[\begin{array}{lll}A \mathbf{b}_{\mathbf{1}} & \cdots & A \mathbf{b}_{\mathbf{n}}\end{array}\right]$, whenever $A \mathbf{b}_{\mathbf{1}}, \ldots, A \mathbf{b}_{\mathrm{n}}$ are valid products. Otherwise, we cannot take the product $A B$.
F. Matrix multiplication. Which of the following products $A B$ are possible? If possible, what is the size of the resulting matrix?
(1) A is 2×5 and B is 2×5.
(2) A is 2×5 and B is 5×2.
(3) A is 5×2 and B is 2×5.
G. Transformations in \mathbb{R}^{2}. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation "rotate 90 degrees clockwise," and $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation "reflect over the x-axis."
(1) Draw the image of the picture from the first page under the composition $T \circ U$. Can you describe the transformation $T \circ U ?^{2}$
(2) Based on your description of $T \circ U$ from the previous part, compute its standard matrix.
(3) Compute the standard matrix of T and of U. Call then A and B respectively. ${ }^{3}$
(4) Compute $A B$. Compare to part (2).
(5) Now draw the image of the picture from the first page under the composition $U \circ T$. Describe this map as a single reflection, and find its standard matrix.
(6) Compute $B A$.
H. Multiplication and composition. Let T a linear transformation with standard matrix A, and U be a linear transformation with standard matrix $B=\left[\begin{array}{lll}\mathbf{b}_{\mathbf{1}} & \cdots & \mathbf{b}_{\mathbf{n}}\end{array}\right]$.
(1) Explain why $U\left(\mathbf{e}_{1}\right)=\mathbf{b}_{\mathbf{1}}$.
(2) Explain why $(T \circ U)\left(\mathbf{e}_{1}\right)=A \mathbf{b}_{1}$.
(3) Use the last part to compute the standard matrix of $T \circ U$.
I. Rotations in \mathbb{R}^{3}. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation "rotate 90 degrees around the x-axis," and $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation "rotate 90 degrees around the y-axis." ${ }^{4}$
(1) Find the standard matrix A for T, and the standard matrix B for U.
(2) Compute $A B$. What happens when you "rotate 90 degrees around the y-axis" then "rotate 90 degrees around the x-axis?"

[^1]
[^0]: ${ }^{1}$ The transformation in part (1) is called a horizontal shear; the transformation in part (2) is called a vertical shear.

[^1]: ${ }^{2}$ Hint: You can consider it as a single reflection.
 ${ }^{3}$ You already did this in problem A.
 ${ }^{4}$ To be precise, rotate counterclockwise if you are looking down from the positive direction on the axis.

