A. PARAMETRIC VECTOR FORM. The general solution to the linear system (\star) below is given next to it.

$$
\text { (*) } \begin{gathered}
-2 x_{1}-6 x_{2}-4 x_{4}-6 x_{5}+5 x_{6}=14 \\
4 x_{1}+15 x_{2}+11 x_{4}+12 x_{5}-10 x_{6}=-37
\end{gathered}
$$

$$
\begin{aligned}
& x_{1}=x_{4}-3 x_{5}+2 \\
& x_{2}=-x_{4}-3 \\
& x_{6}=0 \\
& \quad x_{3}, x_{4}, x_{5} \text { free }
\end{aligned}
$$

(1) Use the general solution to plug in x_{1} through x_{6} into the first set of blanks below. Every entry should involve only constants and free variables.
(2) Fill in the blanks after the third "=". Every entry should involve only constants. Now your solution is in parametric vector form.
B. Solution sets and homogeneous systems. The general solution to the linear system (\star) below is given next to it.

$$
2 x_{1}-5 x_{2}+7 x_{3}=9
$$

$$
\begin{align*}
& x_{1}=3-4 x_{3} \\
& x_{2}=-3 / 5-1 / 5 x_{3}
\end{align*}
$$

$$
x_{3} \text { free }
$$

(1) Rewrite this solution set in parametric vector form as $\mathbf{x}=\mathbf{p}+s \mathbf{v}$. What geometric shape is the solution set?
(2) Write your solution set in parametric form with a different "constant vector" \mathbf{p}.
(3) Without doing any computation, write the solution set of the system

$$
\begin{gathered}
2 x_{1}-5 x_{2}+7 x_{3}=0 \\
x_{1}+4 x_{3}=0
\end{gathered}
$$

in parametric vector form.
(4) Given that $(2,-1,1)$ is a solution to the linear system

$$
\begin{gathered}
2 x_{1}-5 x_{2}+7 x_{3}=-2 \\
x_{1}+4 x_{3}=6
\end{gathered}
$$

write the solution set to this system in parametric vector form without doing any computation.

DEFINITION: A set of vectors $S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is linearly independent if, whenever $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}=\mathbf{0}$, we have $c_{1}=\cdots=c_{t}=0$. Otherwise, the set is linearly dependent. ${ }^{1}$

C. LINEAR INDEPENDENCE.

(1) Suppose that $2 \mathbf{v}_{\mathbf{1}}-3 \mathbf{v}_{\mathbf{2}}+4 \mathbf{v}_{\mathbf{3}}=\mathbf{0}$. Is $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ linearly independent? Write $\mathbf{v}_{\mathbf{3}}$ as a linear combination of $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$.
(2) Rewrite the equation $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}=\mathbf{0}$ as a matrix-times-vector equation. Does this correspond to a homogeneous linear system?
(3) Complete the following statement, and explain why it is true:
$S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is linearly independent if and only if $\left[\begin{array}{lll}\mathbf{v}_{\mathbf{1}} & \cdots & \mathbf{v}_{\mathbf{t}}\end{array}\right] \mathbf{x}=\mathbf{0}$ has no \qquad solution.
D. LINEAR INDEPENDENCE. Determine if each of the following sets of vectors is linearly independent.
(1) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}-2 \\ -4\end{array}\right]\right\}$.
(2) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 5\end{array}\right]\right\}$.
(3) $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 5\end{array}\right]\right\}$.
(4) $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 5\end{array}\right]\right\}$.
(5) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 3 \\ 4\end{array}\right]\right\}$.

$$
\longrightarrow-\rightarrow
$$

(6) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}, \mathbf{v}_{\mathbf{5}}\right\} \subset \mathbb{R}^{4}$.

E*. Linear independence and RREF.

(1) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\} \subseteq \mathbb{R}^{3}$ form a linearly independent set, what are all the possible RREFs for $\left[\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}\end{array}\right]$?
(2) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\} \subseteq \mathbb{R}^{4}$ form a linearly independent set, what are all the possible RREFs for $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathrm{v}_{3}\end{array}\right]$?
(3) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\} \subseteq \mathbb{R}^{m}$ form a linearly independent set, what are all the possible RREFs for $\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{\mathbf{n}}\end{array}\right]$? What can you say about m and n ?
(4) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\} \subseteq \mathbb{R}^{3}$ form a linearly dependent set, what are all the possible RREFs for $\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]$? 2
(5) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\} \subseteq \mathbb{R}^{3}$ form a linearly dependent set, what are all the possible RREFs for $\left[\begin{array}{lll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}\end{array}\right]$?

[^0]Definition: A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if, for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all $c \in \mathbb{R}$,
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$, and
(2) $T(c \mathbf{u})=c T(\mathbf{u})$.

These two conditions are equivalent to the single condition

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v}) \quad \text { for all } \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}, \text { and all } c, d \in \mathbb{R}
$$

DEFINITION: A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation if $T(\mathbf{x})=A \mathbf{x}$ for some matrix A.
THEOREM: Every matrix transformation is a linear transformation.

F. LINEAR TRANSFORMATIONS.

(1) Consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the rule $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left(\left[\begin{array}{l}x_{1}^{2} \\ x_{2}^{2}\end{array}\right]\right)$. Compare $T\left(\left[\begin{array}{l}2 \\ 0\end{array}\right]\right)$ and $2 T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$. Is T a linear transformation?
(2) Consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(\mathbf{x})=-\mathbf{x}$. Is T a linear transformation?
(3) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 2\end{array}\right]$, then what is $T\left(\left[\begin{array}{l}2 \\ 2\end{array}\right]\right)$?
G. MATRIX TRANSFORMATIONS. Describe each of the following matrix transformations geometrically. ${ }^{3}$
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the rule $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the rule $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
(3) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by the rule $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
H^{*}. Properties of linear transformations. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
(1) Decide on a suitable definition of "line" in \mathbb{R}^{n}. Show that if $L \subseteq \mathbb{R}^{n}$ is a line, then $T(L)$ is either a line or a point ${ }^{4}$.
(2) If $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\} \subset \mathbb{R}^{n}$ is linearly independent, must $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{t}}\right)\right\} \subset \mathbb{R}^{m}$ be linearly independent?
(3) If $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{t}}\right)\right\} \subset \mathbb{R}^{m}$ is linearly independent, must $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\} \subset \mathbb{R}^{n}$ be linearly independent?
(4) If $m=n=2$ and $W \subset \mathbb{R}^{2}$ is a square, what can you say about $T(W)$? What if W is a triangle? A circle?
(5) Suppose that $m=n$, and $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an inverse function to $T(U \circ T=T \circ U$ is the identity function on \mathbb{R}^{n}). Show that U is a linear transformation.
${ }^{3}$ Hint: Plug in $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ or $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
${ }^{4}$ By definition, $T(L)=\{T(\mathbf{p}) \mid \mathbf{p} \in L\}$.

[^0]: ${ }^{1}$ Linear (in)dependence is a property of a set of vectors: it's about their relationship with each other. However, people will often say things like " $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}$ are linearly independent" to mean " $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is linearly independent."
 ${ }^{2}$ Hint: Depending how you organize them, you should have 3 or 4 "types" of matrices.

