Math 314. Week 2 worksheet ($\S 1.1-\S 1.5$).

A. REDUCED ECHELON FORM AND SOLUTIONS. Consider the following two matrices:

$$
A=\left[\begin{array}{cccccc}
0 & 3 & -6 & 6 & 4 & 5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccccc}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

I used a sequence of elementary row operations to transform A into $B .{ }^{1}$
(1) Is the matrix A in echelon form? Reduced echelon form? Is B in echelon form? Reduced echelon form?
(2) Suppose that A is the augmented matrix of a linear system that we will call " (\star) ". Write down the first equation in the system (\star). How many equations are in this system? How many variables? How is the role of the last column of A different from the role of the others in this linear system?
(3) What are the pivots of A (or $B)$? Which variables in (\star) are basic variables, and which ones are free variables?
(4) Explain how, without computing anything else, we know that the linear system (\star) is consistent.
(5) Write down the general solution to the linear system (\star).

B. ROW REDUCTION ALGORITHM.

$$
\left\{\begin{array}{c}
x+2 y+3 z=6 \\
3 x+y-z=-2 \\
2 x-3 y+2 z=14
\end{array}\right.
$$

(1) Rewrite this system of equations as an augmented matrix.
(2) Find the first (left-most) nonzero column. If the top entry is 0 , use the exchange operation to move a nonzero entry there. ${ }^{2}$
(3) Use the replacement operation (perhaps a few times) to turn every entry below the pivot into 0 .
(4) Repeat the first few steps until you run out of rows.
(5) Congratulate yourself: your matrix is in echelon form.
(6) Scale each row to turn every pivot into a 1.
(7) Working from right to left, use the replacement operation to turn each entry above a pivot into 0 .
(8) Congratulate yourself: your matrix is in reduced echelon form.
(9) Find the general solution to your system of equations.

C*. Matrix shapes and solutions.

(1) Suppose that A is a 4×7 matrix (4 rows and 7 columns), and that \mathbf{b} is a vector in \mathbb{R}^{4}. Consider the equation $A \mathbf{x}=\mathbf{b}$. If we rewrite $A \mathbf{x}=\mathbf{b}$ as a linear system, how many variables and how many equations will there be?
(2) Without knowing anything else about A and \mathbf{b}, determine if each of the following is POSSIBLE or IMPOSSIBLE:

- $A \mathrm{x}=\mathrm{b}$ has no solution.
- $A \mathbf{x}=\mathbf{b}$ has exactly one solution.
- $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.

If "possible" come up with a specific example of an A and \mathbf{b}. If "impossible" explain why not.

[^0](3) Now suppose that B is a 7×4 matrix (7 rows and 4 columns), and that \mathbf{c} is a vector in \mathbb{R}^{7}. Consider the equation $B \mathbf{x}=\mathbf{c}$. If we rewrite $B \mathbf{x}=\mathbf{c}$ as a linear system, how many variables and how many equations will there be?
(4) Without knowing anything else about B and \mathbf{c}, determine if each of the following is POSSIBLE or IMPOSSIBLE:

- $B \mathbf{x}=\mathbf{c}$ has no solution.
- $B \mathbf{x}=\mathbf{c}$ has exactly one solution.
- $B \mathbf{x}=\mathbf{c}$ has infinitely many solutions.

If "possible" come up with a specific example of an B and \mathbf{c}. If "impossible" explain why not.
(5) In part (2) above, which option do you think is most likely? Same question for part (4).
D. Vector operations. Let $\mathbf{u}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \in \mathbb{R}^{2}$.
(1) Compute $\mathbf{u}+\mathbf{v}$ by adding the coordinates \mathbf{u} and \mathbf{v}.
(2) Draw \mathbf{u} and \mathbf{v} as arrows on the plane. ${ }^{3}$
(3) Draw an arrow starting at $(1,-1)$ that goes 2 to the right and 1 up: we think of this as "moving the tail of \mathbf{v} to the head of \mathbf{u}." Now draw an arrow starting at $(2,1)$ that goes 1 to the right and 1 down. Finally, draw $\mathbf{u}+\mathbf{v}$.
(4) State the "parallelogram rule for addition."
(5) Compute $-2 \mathbf{v}$ by multiplying each coordinate of \mathbf{v} by -2 .
(6) Draw $-2 \mathbf{v}$ using the previous part. Now draw $-2 \mathbf{u}$ without doing any computation.
(7) Try to draw $\frac{1}{2} \mathbf{u}+3 \mathbf{v}$ just by drawing pictures; no computation.

DEFINITION: Let $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}$ be vectors in \mathbb{R}^{n}. A vector of the form $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}$ for some $c_{1}, \ldots, c_{t} \in \mathbb{R}$ is a linear combination of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}$; specifically, it is the linear combination with weights c_{1}, \ldots, c_{t}. The span of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}$ is the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}$ in \mathbb{R}^{n}.
E. LINEAR COMbINATIONS AND MATRIX EQUATIONS. In this problem, DO NOT multiply or add up any numbers!
(1) Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and the vector $\mathbf{b}=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$. Express the product $A \mathbf{b}$ explicitly as a linear combination of the columns of A.
(2) Consider the vectors $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}3 \\ 9\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 7\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}9 \\ 1\end{array}\right]$. Express the linear combination $5 v_{1}+13 v_{2}-42 v_{3}$ in the form $A \mathbf{b}$.

[^1]
F. Span.

(1) Let $\mathbf{u}=\left[\begin{array}{c}1 \\ -1\end{array}\right] \in \mathbb{R}^{2}$. Draw (as points in the plane) $1 \mathbf{u}, 0 \mathbf{u},-1 \mathbf{u}, 1 / 2 \mathbf{u}$, and $2 \mathbf{u}$. All these points are on a line; is every point on this line in $\operatorname{Span}\{\mathbf{u}\}$?
(2) Let $\mathbf{u}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \in \mathbb{R}^{2}$. Is $\mathbf{u} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$? What about $\mathbf{u}+\mathbf{v}$? Convince yourself that $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}=\mathbb{R}^{2}$.
(3) Convince yourself that Span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ includes every point in \mathbb{R}^{3}.
(4) Rephrase the question

$$
\text { Is }\left[\begin{array}{c}
-1 \\
5 \\
-9
\end{array}\right] \text { in the span of }\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]\right\} ?
$$

in terms of a system of linear equations.
G^{*}. Relationship between columns and solutions. Let $A=\left[\begin{array}{llll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \cdots & \mathbf{v}_{\mathbf{t}}\end{array}\right]$ be a matrix, where the $\mathbf{v}_{\mathbf{i}}$'s are columns.
(1) Suppose that $\mathbf{v}_{\mathbf{2}}=3 \mathbf{v}_{\mathbf{1}}$. Explain why the vector $\mathbf{p}=\left[\begin{array}{c}3 \\ -1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{0}$.
(2) Conversely, if $\mathbf{x}=\mathbf{p}$ is a solution to $A \mathbf{x}=\mathbf{0}$, explain why $\mathbf{v}_{\mathbf{2}}=3 \mathbf{v}_{\mathbf{1}}$.
(3) Now suppose that the RREF of A is

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & 3 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

What can you say about $\mathbf{v}_{\mathbf{3}}$ in the original matrix A ? What can you say about the relationship of \mathbf{v}_{1} and \mathbf{v}_{5} in A ?
(4) With the same info as in part (3), without doing any row reduction ${ }^{4}$, could A be

$$
\left[\begin{array}{cccccc}
2 & 3 & 0 & -1 & 6 & 7 \\
-6 & 1 & 0 & -7 & -18 & -5 \\
1 & 5 & 0 & -4 & 3 & 6
\end{array}\right] ?
$$

[^2]
[^0]: ${ }^{1}$ Trust me! Don't bother checking it.
 ${ }^{2}$ It's not! So actually, don't do anything.

[^1]: ${ }^{3}$ Specifically, draw an arrow from $(0,0)$ to $(1,-1)$ for \mathbf{u}.

[^2]: ${ }^{4}$ Hint: What is the relationship between $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{4}}$?

