Math 314. Week 14 worksheet (review).

A. Warmup True/False.

(1) The domain of the linear transformation with the standard matrix $\left[\begin{array}{ccc}2 & -3 & 1 \\ 0 & 5 & -7\end{array}\right]$ is \mathbb{R}^{2}.
(2) If A and B are square matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
(3) If B is an echelon form for a matrix A, then the pivot columns of B form a basis for $\operatorname{Col}(A)$.
(4) If the columns of an $n \times n$ matrix span \mathbb{R}^{n}, then the determinant of that matrix is nonzero.
(5) A scalar λ is an eigenvalue for A if and only if $A-\lambda I$ is not invertible.
(6) If A is a symmetric matrix, then A is diagonalizable.
(7) If A is diagonalizable, then A is invertible.
(8) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal basis for a subspace $W \subset \mathbb{R}^{n}$, then $\left\{\mathbf{v}_{\mathbf{1}}, 2 \mathbf{v}_{\mathbf{2}}, 3 \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal basis for W.
(9) If T is a 4×4 triangular matrix with 4 different entries on the diagonal, then it is diagonalizable.
(10) We can compute the eigenvalues of a matrix by row reducing to echelon form and taking the entries on the diagonal.
B. LINEAR TRANSFORMATIONS FROM $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(1) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, how can you find the first column of its standard matrix? The second column?
(2) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 2\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 1 / 2\end{array}\right]$, compute $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$. What is the standard matrix of T ?
(3) Is the transformation depicted below a linear transformation? Why or why not? If so, find its standard matrix.

(4) Is there any reason why the transformation depicted below isn't a linear transformation? If not, find its standard matrix.

C. Vector spaces

(1) What two operations does a vector space have?
(2) Give at least four different types of examples of vector spaces.
(3) What "special element" does a vector space have? Name it for each of your examples of vector spaces.
D. SUBSPACES
(1) What three conditions need to be checked to see if a subset is a subspace?
(2) If $\mathbf{v}, \mathbf{w} \in V$, is $\{s \mathbf{v}+t \mathbf{w} \mid s, t \in \mathbb{R}\}$ a subspace of V ? Hint: what is another name for this set?
(3) If $\mathbf{v} \in V$ is a nonzero vector, is $\{s \mathbf{v} \mid s \geq 0\}$ a subspace of V ? Check the three conditions for a subspace.
(4) How many vectors are in Span $\left\{\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ -3\end{array}\right]\right\}$?
(5) How many vectors are in $\operatorname{Span}\{\mathbf{0}\}$?

E. BASES AND DIMENSION

(1) If V is two-dimensional and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ a linearly independent set? Is $\{\mathbf{u}, \mathbf{v}\}$ a linearly independent set? Does $\{\mathbf{u}, \mathbf{v}\}$ span V ?
(2) If $V=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, what can you say about $\operatorname{dim}(V)$? How could you find $\operatorname{dim}(V)$?
(3) If $2 \mathbf{v}+3 \mathbf{w}=7 \mathbf{u}$, then what are the possible dimensions for $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
(4) How many different bases are there for \mathbb{R}^{2} ?
F. SolVIng A LINEAR SYSTEM. Consider the augmented matrix
(1) Write the linear system associated to this augmented matrix. $\left[\begin{array}{ccc|c}3 & -2 & 1 & 7 \\ -6 & 5 & 1 & 2 \\ 0 & 5 & 1 & -8\end{array}\right]$
(2) Rewrite this linear system as a vector equation.
(3) Rewrite this linear system as a matrix-times-vector equation.
(4) Find the general solution of this system.

G. Solutions of Linear systems

(1) Given a linear system, how can we tell if the system has no solution? one solution? infinitely many solutions?
(2) Can $A \mathrm{x}=\mathrm{b}$ have a solution and $A \mathrm{x}=\mathbf{0}$ not have a solution?
(3) Can $A \mathbf{x}=\mathbf{0}$ have a solution and $A \mathbf{x}=\mathbf{b}$ not have a solution?
(4) Can $A \mathbf{x}=\mathbf{b}$ have exactly one solution $A \mathbf{x}=\mathbf{0}$ not have exactly one solution?
(5) If A is a 4×7 matrix, and $A \mathbf{x}=\mathbf{b}$, what size is \mathbf{x} and what size is \mathbf{b} ?
(6) Is there a 4×7 matrix A for which $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} ? Given A, how would you tell?
(7) Is there a 4×7 matrix A for which $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every \mathbf{b} ? Given A, how would you tell?
(8) Is there a 7×4 matrix A for which $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} ? Given A, how would you tell?
(9) Is there a 7×4 matrix A for which $A \mathbf{x}=\mathbf{b}$ has only one solution for every \mathbf{b} for which the system is consistent? Given A, how would you tell?
H. LINEAR TRANSFORMATION. Consider the function $E: P_{2} \rightarrow \mathbb{R}^{4}$ given by $E(p(t))=\left[\begin{array}{l}p(0) \\ p(1) \\ p(2) \\ p(3)\end{array}\right]$.
(1) What two conditions do we check to see if E is a linear transformation?
(2) Check carefully that E is a linear transformation.
(3) What is the kernel of E ?
(4) What is the range of E ? Find a basis for it.
I. \mathcal{B}-Matrix. Consider the function $D: P_{2} \rightarrow P_{2}$ given by $D(p(t))=\frac{d p}{d t}$.
(1) The set of polynomials $\mathcal{B}=\left\{t^{2},(t-1)^{2},(t-2)^{2}\right\}$ is a basis for P_{2}. So is $\mathcal{C}=\left\{t^{2}, t, 1\right\}$. Find the change-of-coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$.
(2) Find the \mathcal{B}-matrix of D.

J. More \mathcal{B}-matrices

(1) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is reflection over the line L through the origin, find a basis \mathcal{B} for \mathbb{R}^{2} such that $[T]_{\mathcal{B}}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
(2) If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are linearly independent eigenvectors for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, what is the $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$-matrix for T ? What is the standard matrix for T ?
(3) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is rotation by $\pi / 3$ counterclockwise, and \mathcal{B} is an orthonormal basis for \mathbb{R}^{2}, can you determine $[T]_{\mathcal{B}}$?

