Math 314. Week 14 worksheet (review).

A. WARMUP TRUE/FALSE.

(1) The domain of the linear transformation with the standard matrix $\begin{bmatrix} 2 & -3 & 1 \\ 0 & 5 & -7 \end{bmatrix}$ is \mathbb{R}^2 .

- (2) If A and B are square matrices, then det(A + B) = det(A) + det(B).
- (3) If B is an echelon form for a matrix A, then the pivot columns of B form a basis for Col(A).
- (4) If the columns of an $n \times n$ matrix span \mathbb{R}^n , then the determinant of that matrix is nonzero.
- (5) A scalar λ is an eigenvalue for A if and only if $A \lambda I$ is not invertible.
- (6) If A is a symmetric matrix, then A is diagonalizable.
- (7) If A is diagonalizable, then A is invertible.
- (8) If $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is an orthogonal basis for a subspace $W \subset \mathbb{R}^n$, then $\{\mathbf{v_1}, 2\mathbf{v_2}, 3\mathbf{v_3}\}$ is an orthogonal basis for W.
- (9) If T is a 4×4 triangular matrix with 4 different entries on the diagonal, then it is diagonalizable.
- (10) We can compute the eigenvalues of a matrix by row reducing to echelon form and taking the entries on the diagonal.
- B. Linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2.$
 - (1) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, how can you find the first column of its standard matrix? The second column?
 - (2) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, and $T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 3\\2 \end{bmatrix}, T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} -1\\1/2 \end{bmatrix},$

compute $T\begin{pmatrix} 1\\2 \end{pmatrix}$ and $T\begin{pmatrix} 1\\0 \end{pmatrix}$. What is the standard matrix of T?

(3) Is the transformation depicted below a linear transformation? Why or why not? If so, find its standard matrix.

(4) Is there any reason why the transformation depicted below isn't a linear transformation? If not, find its standard matrix.

C. VECTOR SPACES

- (1) What two operations does a vector space have?
- (2) Give at least four different types of examples of vector spaces.
- (3) What "special element" does a vector space have? Name it for each of your examples of vector spaces.

D. SUBSPACES

- (1) What three conditions need to be checked to see if a subset is a subspace?
- (2) If $\mathbf{v}, \mathbf{w} \in V$, is $\{s\mathbf{v} + t\mathbf{w} \mid s, t \in \mathbb{R}\}$ a subspace of V? Hint: what is another name for this set?
- (3) If $\mathbf{v} \in V$ is a nonzero vector, is $\{s\mathbf{v} \mid s \ge 0\}$ a subspace of V? Check the three conditions for a subspace.
- (4) How many vectors are in Span $\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-3 \end{bmatrix} \right\}$? (5) How many vectors are in Span $\{\mathbf{0}\}$?

E. BASES AND DIMENSION

- (1) If V is two-dimensional and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ a linearly independent set? Is $\{\mathbf{u}, \mathbf{v}\}$ a linearly independent set? Does $\{\mathbf{u}, \mathbf{v}\}$ span V?
- (2) If $V = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, what can you say about $\dim(V)$? How could you find $\dim(V)$?
- (3) If $2\mathbf{v} + 3\mathbf{w} = 7\mathbf{u}$, then what are the possible dimensions for $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
- (4) How many different bases are there for \mathbb{R}^2 ?

- F. SOLVING A LINEAR SYSTEM. Consider the augmented matrix
- $\begin{bmatrix} 3 & -2 & 1 & 7 \\ -6 & 5 & 1 & 2 \\ 0 & 5 & 1 & -8 \end{bmatrix}$ (1) Write the linear system associated to this augmented matrix.
 - (2) Rewrite this linear system as a vector equation.
 - (3) Rewrite this linear system as a matrix-times-vector equation.
 - (4) Find the general solution of this system.
- G. SOLUTIONS OF LINEAR SYSTEMS
 - (1) Given a linear system, how can we tell if the system has no solution? one solution? infinitely many solutions?
 - (2) Can $A\mathbf{x} = \mathbf{b}$ have a solution and $A\mathbf{x} = \mathbf{0}$ not have a solution?
 - (3) Can $A\mathbf{x} = \mathbf{0}$ have a solution and $A\mathbf{x} = \mathbf{b}$ not have a solution?
 - (4) Can $A\mathbf{x} = \mathbf{b}$ have exactly one solution $A\mathbf{x} = \mathbf{0}$ not have exactly one solution?
 - (5) If A is a 4×7 matrix, and $A\mathbf{x} = \mathbf{b}$, what size is \mathbf{x} and what size is \mathbf{b} ?
 - (6) Is there a 4×7 matrix A for which $A\mathbf{x} = \mathbf{b}$ has a solution for every b? Given A, how would you tell?
 - (7) Is there a 4×7 matrix A for which $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every b? Given A, how would you tell?
 - (8) Is there a 7×4 matrix A for which $A\mathbf{x} = \mathbf{b}$ has a solution for every b? Given A, how would you tell?
 - (9) Is there a 7 \times 4 matrix A for which $A\mathbf{x} = \mathbf{b}$ has only one solution for every **b** for which the system is consistent? Given A, how would you tell?
- H. LINEAR TRANSFORMATION. Consider the function $E: P_2 \to \mathbb{R}^4$ given by $E(p(t)) = \begin{vmatrix} p(0) \\ p(1) \\ p(2) \\ p(2) \\ p(3) \end{vmatrix}$. (2) Check carefully that E is a linear transformation?

 - (2) Check carefully that E is a linear transformation.
 - (3) What is the kernel of E?
 - (4) What is the range of *E*? Find a basis for it.

I. \mathcal{B} -MATRIX. Consider the function $D: P_2 \to P_2$ given by $D(p(t)) = \frac{dp}{dt}$.

- (1) The set of polynomials $\mathcal{B} = \{t^2, (t-1)^2, (t-2)^2\}$ is a basis for P_2 . So is $\mathcal{C} = \{t^2, t, 1\}$. Find the change-of-coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$.
- (2) Find the \mathcal{B} -matrix of D.
- J. More \mathcal{B} -matrices
 - (1) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is reflection over the line L through the origin, find a basis \mathcal{B} for \mathbb{R}^2 such that $[T]_{\mathcal{B}} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
 - (2) If $\mathbf{v_1}, \ldots, \mathbf{v_n}$ are linearly independent eigenvectors for a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$, with eigenvalues $\lambda_1, \ldots, \lambda_n$, what is the $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ -matrix for T? What is the standard matrix for T?
 - (3) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is rotation by $\pi/3$ counterclockwise, and \mathcal{B} is an orthonormal basis for \mathbb{R}^2 , can you determine $[T]_{\mathcal{B}}$?