Math 314. Week 13 worksheet (§7.1, §7.4).

A matrix A is symmetric if $A^T = A$. Note that every symmetric matrix is square.

A matrix A is **orthogonal** if it is square, and the columns of A form an orthonormal set.

A. SYMMETRIC MATRICES.

(1) Which of the following 3×3 matrices are symmetric?

	5	4	1]		6	5	4
•	6	2	4	•	5	3	2
	3	6	5		4	2	1
	[1	2	1		[1	3	5
•	3	4	3	•	2	4	6
	$\lfloor 5$	6	5		[1	3	5

- (2) If A is any matrix, is $B = A^T A$ always symmetric? Why or why not?
- (3) Is $A = \begin{bmatrix} \mathbf{a_1} & \cdots & \mathbf{a_n} \end{bmatrix}$, explain how the entries of $A^T A$ are related to dot products between the vectors $\mathbf{a_i}$.
- (4) If B is a symmetric matrix, is $B = A^T A$ always for some matrix A? Why or why not?¹

B. ORTHOGONAL MATRICES.

- (1) Explain why an $n \times n$ matrix Q is orthogonal if and only if $Q^T Q = I_n$.
- (2) Explain why an orthogonal matrix Q must be invertible and $Q^{-1} = Q^{T}$.
- (3) For which of the following linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$ is its standard matrix orthogonal?
 - rotation counterclockwise by α° .
 - stretching by a in the vertical direction.
 - reflection over the *y*-axis.

SPECTRAL THEOREM: If A is a symmetric matrix, then A is diagonalizable. Moreover, there is an *orthogonal* matrix Q (and diagonal matrix D) such that $A = QDQ^T$.

An expression $A = QDQ^T$ with Q orthogonal and D diagonal is called an **orthogonal diagonalization** of A. One of the key points behind the spectral theorem is the following:

THEOREM: If A is a symmetric matrix, and v and w are eigenvectors of A with different eigenvalues, then v and w are orthogonal.

- C. SPECTRAL THEOREM Which of the following are true?
 - (1) Every $n \times n$ matrix is similar to a diagonal matrix.
 - (2) Every $n \times n$ symmetric matrix is similar to a diagonal matrix.
 - (3) Every $n \times n$ matrix has an eigenvalue.
 - (4) Every $n \times n$ symmetric matrix has an eigenvalue.
 - (5) Every $n \times n$ symmetric matrix has n distinct eigenvalues.
 - (6) Every basis of an eigenspace of an $n \times n$ symmetric matrix is orthonormal.
 - (7) For every $n \times n$ symmetric matrix, there is an orthonormal basis consisting of eigenvectors.

¹Hint: Use the previous part.

D. COMPUTING AN ORTHOGONAL DIAGONALIZATION In this problem, we will find an orthogonal diagonal-

ization of the matrix $B = \begin{bmatrix} 23 & 8 & 8 \\ 8 & 11 & -16 \\ 8 & -16 & 11 \end{bmatrix}$.

(1) First, we find the eigenvalues of B. Explain how to find the eigenvalues of B (but don't go through the computation). Your answer should involve the word "roots."

I computed that the eigenvalues of B are $\lambda = 27$ and $\lambda = -9$.

(2) Second, we find bases for the eigenspaces of B. Explain how to find bases for the eigenspaces of B(but don't go through the computation).

A basis of the
$$\lambda = 27$$
 eigenspace is $\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$, and a basis for the $\lambda = -9$ eigenspace is $\left\{ \begin{bmatrix} -1/2\\1\\1 \end{bmatrix} \right\}$.

- (3) Third, we apply the Gram-Schmidt process to turn bases for any eigenspaces of dimension > 1 into orthogonal sets. Do this step. Now explain why, once we combine all of the bases for the different eigenspaces together, we get an orthogonal set.
- (4) Fourth, normalize all these eigenvectors from the last step, and plug everything in in the same places as with diagonalization from chapter 5.

E. USING THE SPECTRAL THEOREM TO UNDERSTAND A LINEAR TRANSFORMATION. We can interpret the factorization $A = PDP^T$ as saying that D is the matrix for the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ in the orthonormal basis given by the columns of P.

For the matrix $B = \begin{bmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{bmatrix}$, we have the orthogonal diagonalization $B = PDP^T$, with $P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$. We are going to use this to understand the linear transformation $T(\mathbf{x}) = B\mathbf{x}$.

- - (1) The two columns $\mathbf{u_1}, \mathbf{u_2}$ of P form an orthonormal basis for \mathbb{R}^2 . Draw these vectors, and make axes in these two directions, marking off a tick mark each unit length.
 - (2) Fill in the blanks: T corresponds to stretching by 2 in the ____ direction and _____ over the axis.
 - (3) Draw a picture of the image of the unit sun under the transformation T.

(4) Draw a picture of the image of the happy unit sun under the transformation T.

If A is an $m \times n$ matrix, the **singular values** of A are the *square roots* of the eigenvalues of $A^T A$. We denote these by σ_i , and we generally list them in decreasing order, and if an eigenvalue has multiplicity t, we repeat the corresponding singular value t times on the list.

A singular value decomposition (SVD) of an $m \times n$ matrix A is an expression $A = U\Sigma V^T$ where

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & & 0 \\ & & \sigma_t & \\ \hline & 0 & & 0 \end{bmatrix},$$

U is an $m \times m$ orthogonal matrix, and V is an $n \times n$ orthogonal matrix.

The values $\sigma_1, \ldots, \sigma_t$ are the nonzero singular values of A, and the columns of V are an orthonormal basis of eigenvectors for $A^T A$.

- F. COMPUTING AN SVD In this problem, we will compute a singular value decomposition for the matrix $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$.
 - (1) First, we compute an orthonormal diagonalization for $A^T A$. This involves all of the steps from problem D! An orthonormal diagonalization $A^T A = PDP^T$ is $P = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$ and $D = \begin{bmatrix} 360 & 0 & 0 \\ 0 & 90 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
 - (2) Second, fill in the matrices Σ and V in the decomposition. The entries of Σ are the singular values, and the columns of V are the eigenvectors of $A^T A$ in the corresponding order.
 - (3) Third, compute the columns of U as the normalized (to unit length) vectors $A\mathbf{v_i}$ for the columns $\mathbf{v_i}$ of V.

- G. DECOMPOSITIONS AND INVERSES.
 - (1) If A is symmetric and invertible, and $A = PDP^{T}$ is an orthogonal diagonalization of A, then find an orthogonal diagonalization of A^{-1} .
 - (2) If A is invertible, and $A = U\Sigma V^T$ is a singular value decomposition of A, then find a singular value decomposition of A^{-1} .

H. KEY POINTS IN THESE DECOMPOSITIONS.

- (1) If v is an eigenvector of $A^T A$, and u and v are orthogonal, explain why Au and Av are orthogonal. This explains why the matrix U we make in the last step of the SVD is orthogonal.
- (2) If A is symmetric, and u and v are eigenvectors with different eigenvalues, why are u and v orthogonal?²

I. SVD AND RANK.

- (1) Explain why $\operatorname{Col}(A) = \operatorname{Null}(A^T)^{\perp}$.
- (2) Explain why $\operatorname{Col}(A) \cap \operatorname{Null}(A^T) = \{\mathbf{0}\}.$
- (3) Explain why $\operatorname{Null}(A) = \operatorname{Null}(A^T A)$.
- (4) Explain why $rank(A^T A) = rank(A)$.
- (5) Explain why the number of nonzero singular values of A is equal to the rank of A.

²Hint: $(A\mathbf{u}) \cdot \mathbf{v} = \mathbf{u}^T A^T \mathbf{v} = \mathbf{u}^T A \mathbf{v} = \mathbf{u} \cdot (A\mathbf{v}).$