Recall: The projection of \mathbf{v} onto a subspace H in \mathbb{R}^{n} is

- the unique vector $\hat{\mathbf{v}} \in H$ such that $\mathbf{v}-\hat{\mathbf{v}} \in H^{\perp}$; and also
- the closest vector to \mathbf{v} in H, which means $\|\mathbf{v}-\mathbf{h}\| \geq\left\|\mathbf{v}-\operatorname{proj}_{H}(\mathbf{v})\right\|$ for all points $\mathbf{h} \in H$. If $\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{t}}\right\}$ is an orthogonal basis for H, then we have a formula

$$
\operatorname{proj}_{H}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{u}_{\mathbf{1}}}{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{1}}} \mathbf{u}_{\mathbf{1}}+\cdots+\frac{\mathbf{v} \cdot \mathbf{u}_{\mathbf{t}}}{\mathbf{u}_{\mathbf{t}} \cdot \mathbf{u}_{\mathbf{t}}} \mathbf{u}_{\mathbf{t}}
$$

A. Gram-Schmidt process. Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$. We will use the Gram-Schmidt process to replace $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ by an orthonormal set $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ with the same span.
(1) Our first goal is to make an orthogonal set $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$. Keep the first vector the same: $\mathbf{w}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}$. For the second vector take $\mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{\mathbf{1}}$.
(2) Convince yourself ${ }^{1}$ that $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$ is an orthogonal set.
(3) Our next goal is to turn the orthogonal set into an orthonormal set. Divide each vector w_{i} by a scalar to turn it into a unit vector $\mathbf{u}_{\mathbf{i}}$.
(4) Convince yourself that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthonormal set.
(5) Use your answer to compute the projection of the vector $\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]^{T}$ onto $H=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.
B. GRAM-SChMIDT AGAIN. Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ be as in the previous problem, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]^{T}$. In this problem, we apply the Gram-Schmidt process to the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.
(1) Our first goal is to make an orthogonal set $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$. Here are the formulas:

- $\mathrm{w}_{1}=\mathrm{v}_{1}$
- $\mathrm{w}_{2}=\mathrm{v}_{2}-\frac{\mathrm{v}_{2} \cdot \mathrm{w}_{1}}{\mathrm{w}_{1} \cdot \mathrm{w}_{1}} \mathrm{w}_{1}$
- $\mathrm{w}_{3}=\mathrm{v}_{3}-\frac{\mathrm{v}_{3} \cdot \mathrm{w}_{1}}{\mathrm{w}_{1} \cdot \mathrm{w}_{1}} \mathrm{w}_{1}-\frac{\mathrm{v}_{3} \cdot \mathrm{w}_{2}}{\mathrm{w}_{2} \cdot \mathrm{w}_{2}} \mathrm{w}_{2}$.

In each step we are subtracting off the projection of the next $\mathbf{v}_{\mathbf{i}}$ onto the span of the previous $\mathbf{w}_{\mathbf{i}}$'s we already computed.
(2) Our second goal is to turn the orthogonal set into an orthonormal set. Divide each vector $\mathbf{w}_{\mathbf{i}}$ by a scalar to turn it into a unit vector $\mathbf{u}_{\mathbf{i}}$.
(3) Use your answer to find a basis for H^{\perp}, where $H=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.

If $A \mathrm{x}=\mathbf{b}$ is a linear system, then a least-squares solution to $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b}-A \mathbf{v}\| \geq$ $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ for all vectors \mathbf{v}. That is, $A \hat{\mathbf{x}}$ is as close as possible to \mathbf{b}.

If $\hat{\mathbf{x}}$ is a least-squares solution to $A \mathbf{x}=\mathbf{b}$, then $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$.
$\hat{\mathbf{x}}$ is a least-squares solution to $A \mathbf{x}=\mathbf{b} \Longleftrightarrow \hat{\mathbf{x}}$ is a solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. The system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is called the system of normal equations.
C. LeAst squares Let $A=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}5 \\ -1\end{array}\right]$.
(1) Is the system $A \mathbf{x}=\mathbf{b}$ consistent?
(2) Write and solve the normal equations for this system. What is the least-squares solution?
(3) Draw the vector corresponding to the column of A, the vector \mathbf{b}, and the vector $A \hat{\mathbf{x}}$. Interpret their relationship in the context of least-squares solutions.

[^0]D. LEAST SQUARES AGAIN. Let $A=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$.
(1) Is the system $A \mathbf{x}=\mathbf{b}$ consistent?
(2) Write and solve the normal equations for this system. What is the least-squares solution?
(3) Draw the vector corresponding to the column of A, the vector \mathbf{b}, and the vector $A \hat{\mathbf{x}}$. Interpret their relationship in the context of least-squares solutions.
E. Line of best fit. In this problem, we will consider lines of the form $y=a x+b$ in the plane \mathbb{R}^{2}.
(1) Plug in each of the points $(3,-2),(5,-1),(7,0)$ into the equation $y=a x+b$ to get a linear system, and solve for $\left[\begin{array}{l}a \\ b\end{array}\right]$. Do these points lie on a line? If so, which one?
(2) Repeat the same process for the points $(1,5),(2,4),(5,3)$.
(3) Solve the normal equations for the linear system you found in the previous part. This gives a recipe for a line $y=\hat{a} x+\hat{b}$. Graph it and the points from the previous part.
(4) The line you found in part (3) is the closest line to the points $(1,5),(2,4),(5,3)$ in a precise sense. Use the definition of least-squares solution to make this precise.
(5) Here is some totally made up data on advertising spending and sales for local dog food companies:

spending (thousands of dollars)	0	0	.3	1.2	3.6	8.9	46.7
sales (thousands of dollars)	4	18	45	19	40	29	346.

How would you find the line that best fits these data points?
F. LINEARLY INDEPENDENCE REVIEW. Consider the set of polynomials $S=\left\{t^{2},(t-1)^{2},(t-2)^{2},(t-3)^{2}\right\}$.
(1) Is any element of S a scalar multiple of another one?
(2) Is the set S linearly independent? ${ }^{2}$
(3) What is $\operatorname{Span}(S)$? Can you find a basis for it?
G. LINEAR TRANSFORMATION REVIEW. Consider the function $E: P_{2} \rightarrow \mathbb{R}^{4}$ given by $E(p(t))=\left[\begin{array}{l}p(0) \\ p(1) \\ p(2) \\ p(3)\end{array}\right]$.
(1) Check carefully that E is a linear transformation.
(2) What is the kernel of E ?
(2) What is the kernel of E ?
(3) What is the range of E ? Find a basis for it.
H. Parabola of best fit. A parabola is the graph of a polynomial of degree two ${ }^{3}$ on the plane.
(1) Do the points $(-1,1),(0,2),(4,3)$ lie on a parabola?
(2) What about $(-1,1),(0,2),(4,3)$, and $(5,4)$?
(3) Find the parabola of best fit for the four points in the last problem.
(4) Explain why any three points with different x-coordinates lie on a parabola.
(5) Explain why any set of points with different x-coordinates have a unique parabola of best fit.
I. \mathcal{B}-matrix review. Consider the function $D: P_{2} \rightarrow P_{2}$ given by $D(p(t))=\frac{d p}{d t}$.
(1) The set of polynomials $\mathcal{B}=\left\{t^{2},(t-1)^{2},(t-2)^{2}\right\}$ is a basis for P_{2}. So is $\mathcal{C}=\left\{t^{2}, t, 1\right\}$. Find the change-of-coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$.
(2) Find the \mathcal{B}-matrix of D.

[^1]
[^0]: ${ }^{1}$ Hint: $\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}} \mathbf{w}_{\mathbf{1}}=\operatorname{proj}_{\mathrm{Span}\left\{\mathbf{w}_{\mathbf{1}}\right\}}\left(\mathbf{v}_{\mathbf{2}}\right)$

[^1]: ${ }^{2}$ This is NOT the same question as the previous one.
 ${ }^{3}$ Let's include lines as special cases of parabolas, so we can go with degree at most two, rather than exactly two.

