
Math 314. Week 11 worksheet (§6.1, §6.2, §6.3).

The dot product of two vectors v,w ∈ Rn is
v1
v2
...
vn

 ·

w1

w2
...
wn

 = v1w1 + v2w2 + · · ·+ vnwn.

We use the dot product to define:
• two vectors are orthogonal if v ·w = 0;
• the length of a vector is

√
v · v. We write ||v|| for the length of v.

Idea: orthogonal vectors are perpendicular/form a right angle

A set of vectors {u1, . . . ,ut} is
• an orthogonal set if each pair of vectors ui,uj, i 6= j is orthogonal;
• an orthonormal set if each pair of vectors ui,uj, i 6= j is orthogonal and each vector ui has

length one.
Every orthonormal set is an orthogonal set.

THEOREM: Every orthogonal set of nonzero vectors is a linearly independent set.

A. SETS OF VECTORS IN R2. For each of the following, either draw a picture of a set of vectors in R2

that fits the description, or explain why no such set exists.
(1) A set of two vectors that is an orthonormal set.
(2) A set of two vectors that is an orthogonal set, but not orthonormal.
(3) A set of two vectors that is linearly dependent.
(4) A set of two vectors that is linearly independent, but not an orthogonal set.
(5) A set of three vectors that is an orthogonal set.

B. A SET OF VECTORS IN R3. Consider the vectors u =

30
4

 ,v =

01
0

 ,w =

−40
3

.

(1) Compute the dot products u · u, u · v, u ·w, v · v, v ·w, w ·w.
(2) Compute ||u||, ||v||, and ||w||.
(3) Is {u,v,w} an orthogonal set?
(4) Is {u,v,w} an orthonormal set?
(5) Find a scalar c such that cu is a unit vector—a vector of length one.
(6) Let U =

[
u v w

]
. Compute UTU , and compare it to part (1).

FACT: If U =
[
u1 u2 · · · un

]
, then the (i, j)-entry of UTU is the dot product ui · uj. This means

that {u1,u2, . . . ,un} is an orthonormal set if and only if UTU = In.



A set of vectors {u1, . . . ,ut} in a subspace W of Rn is
• an orthogonal basis if it is an orthogonal set that is a basis for W
• an orthonormal basis if it is an orthonormal set that is a basis for W .

One reason orthonormal bases are useful is because it is easy to find the weights/coordinates in such a
basis: if U = {u1, . . . ,ut} is an orthonormal basis1 for W , and w = c1u1 + · · · + ctut ∈ W , then
ci = ui ·w. Put another way,

[w]U =


u1 ·w
u2 ·w

...
ut ·w

 for w ∈ W.

C. Consider the plane H in R3 consisting of points that satisfy the equation 4x+ y + z = 0.
(1) Is H a subspace of R3?
(2) Find a basis2 for H . Is it an orthonormal basis?
(3) Consider the vectors u = [−1

3
, 2
3
, 2
3
]T , v = [0, 1√

2
, −1√

2
]T . Are u,v ∈ H?

(4) Is {u,v} an orthonormal set?
(5) Explain why U = {u,v} is an orthonormal basis for H .
(6) Find the U-coordinates of the point [−1, 1, 3]T .

DEFINITION: The orthogonal complement of a subspace W ⊆ Rn is the set of vectors that are orthog-
onal to every vector in W . We write W⊥ for the orthogonal complement of W . It is also a subspace
of Rn.

THEOREM: If W is a subspace of Rn, then any vector v ∈ Rn can be written as v = v̂ + z with v̂ ∈ W
and z ∈ W⊥ in exactly one way. The vector v̂ is called the projection of v onto W , written as projW (v).
projW (v) is the closest point to v on W .

FORMULA (IF YOU HAVE AN ORTHONORMAL BASIS): If U = {u1, . . . ,ut} is an orthonormal basis3

for W , then
projW (v) = (v · u1)u1 + · · ·+ (v · ut)ut.

In terms of matrices, if U =
[
u1 u2 · · · un

]
, then projW (v) = UUTv.

D. PROJECTION ONTO A LINE. Let W be the line through the origin and the point [1, 3]T in R2.
(1) Draw W and W⊥.
(2) Find4 a basis for W .
(3) A set with one element is automatically orthogonal; there’s no condition. Find an orthonormal

basis for W .
(4) Find the projection of the point [0, 2]T onto W . Do the same for [−5,−5]T .
(5) Find a basis5 for W⊥.

1Warning: This is ONLY true for an ORTHONORMAL basis. That’s why we like them so much.
2Hint: H is the null space of a 1× 3 matrix.
3Warning: This formula ONLY works for an ORTHONORMAL basis!
4Hint: Don’t compute anything!
5Start by finding a vector in W⊥.



E. PROJECTIONS. Suppose that W is a subspace of Rn.
(1) Using the fact that projW (v) is the closest point to v on W , explain why projW (w) = w for any

point w ∈ W .
(2) Now, suppose that U = {u1, . . . ,ut} is an orthonormal basis for W . Use the formula above to

show6 that projW (w) = w for any point w ∈ W .
(3) Explain why projW : Rn → Rn is a linear transformation. If U = {u1, . . . ,ut} is an orthonormal

basis for W , what is the standard matrix of projW ? What is its range?

F*. PROJECTIONS AND ORTHOGONAL COMPLEMENTS. Let W be a subspace of Rn. For this problem,
think about projection in terms of its definition.

(1) What is the kernel of the linear transformation projW : Rn → Rn?
(2) Explain why v = projW (v) + projW⊥(v) for every v ∈ Rn.

G*. PROJECTION AS CLOSEST POINT.
(1) Explain why if a and b are orthogonal, then ||a+b|| ≥ ||a||, and if b 6= 0, then ||a+b|| > ||a||.
(2) Explain why7 if v = v̂ + z with v̂ ∈ W and z ∈ W⊥, then v̂ is the closest point in W to v.

If T : V → W is a linear transformation, then the following form of the rank-nullity theorem holds:

dim(Range(T )) + dim(Kernel(T )) = dim(V ).

To turn T into a matrix, we need a basis for V (to turn V into stacks of numbers) and a basis for W (to
turn W into stack of numbers). If B = {b1, . . . ,bn} and C = {c1, . . . , cm}, then the matrix of T with
respect to these bases is the matrix M such that M · [v]B = [T (v)]C . It is given by the formula

M =
[
[T (b1)]C · · · [T (bn)]C

]
.

H. Let Pn be the vector space of polynomials of degree at most n. Let a0, a1, . . . , an be n + 1 distinct
real numbers.

(1) Explain why the map E : Pn → Rn+1 given by E(p(t)) =
[
p(a0) p(a1) · · · p(an)

]T is a
linear transformation.

(2) What is the kernel of E?
(3) What is dimension of the range of E?
(4) What is the range of E?
(5) Explain why, if (a0, b0), (a1, b1), . . . , (an, bn) are any n + 1 points with different x-coordinates,

there is a polynomial of degree at most n whose graph passes through these points.
(6) Find the matrix of E with respect to the bases B = {1, t, t2, . . . , tn} and E = {e1, . . . , en+1}.
(7) Explain why the matrix from the previous part is invertible.
(8) In the context of part (5), how many polynomials of degree at most n pass through these points?
(9) If (a0, b0), (a1, b1), . . . , (an, bn) are any n+ 1 points with different x-coordinates, and m > n, is

there is a polynomial of degree at most m whose graph passes through these points? How many?
(10) If (a0, b0), (a1, b1), . . . , (an, bn) are any n+ 1 points with different x-coordinates, and m < n, is

there is a polynomial of degree at most m whose graph passes through these points? How many?

6Hint: You can write w = c1u1 + · · ·+ ctut for some numbers c1, . . . , ct ∈ R
7Hint: We can write any point in W as v̂ −w for some other point w ∈W . Take a = z and b = w in the previous part.


