Math 314. Week 11 worksheet ($\S 6.1, \S 6.2, \S 6.3$).
The dot product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ is

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

We use the dot product to define:

- two vectors are orthogonal if $\mathbf{v} \cdot \mathbf{w}=0$;
- the length of a vector is $\sqrt{\mathbf{v} \cdot \mathbf{v}}$. We write $\|\mathbf{v}\|$ for the length of \mathbf{v}.

Idea: orthogonal vectors are perpendicular/form a right angle
A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{t}}\right\}$ is

- an orthogonal set if each pair of vectors $\mathbf{u}_{\mathbf{i}}, \mathbf{u}_{\mathbf{j}}, i \neq j$ is orthogonal;
- an orthonormal set if each pair of vectors $\mathbf{u}_{\mathbf{i}}, \mathbf{u}_{\mathbf{j}}, i \neq j$ is orthogonal and each vector $\mathbf{u}_{\mathbf{i}}$ has length one.
Every orthonormal set is an orthogonal set.
THEOREM: Every orthogonal set of nonzero vectors is a linearly independent set.
A. SETS OF VECTORS IN \mathbb{R}^{2}. For each of the following, either draw a picture of a set of vectors in \mathbb{R}^{2} that fits the description, or explain why no such set exists.
(1) A set of two vectors that is an orthonormal set.
(2) A set of two vectors that is an orthogonal set, but not orthonormal.
(3) A set of two vectors that is linearly dependent.
(4) A set of two vectors that is linearly independent, but not an orthogonal set.
(5) A set of three vectors that is an orthogonal set.
B. A SET OF VECTORS IN \mathbb{R}^{3}. Consider the vectors $\mathbf{u}=\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{w}=\left[\begin{array}{c}-4 \\ 0 \\ 3\end{array}\right]$.
(1) Compute the dot products $\mathbf{u} \cdot \mathbf{u}, \mathbf{u} \cdot \mathbf{v}, \mathbf{u} \cdot \mathbf{w}, \mathbf{v} \cdot \mathbf{v}, \mathbf{v} \cdot \mathbf{w}, \mathbf{w} \cdot \mathbf{w}$.
(2) Compute $\|\mathbf{u}\|,\|\mathbf{v}\|$, and $\|\mathbf{w}\|$.
(3) Is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ an orthogonal set?
(4) Is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ an orthonormal set?
(5) Find a scalar c such that $c u$ is a unit vector-a vector of length one.
(6) Let $U=\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$. Compute $U^{T} U$, and compare it to part (1).

FACT: If $U=\left[\begin{array}{llll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}} & \cdots & \mathbf{u}_{\mathbf{n}}\end{array}\right]$, then the (i, j)-entry of $U^{T} U$ is the dot product $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}$. This means that $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ is an orthonormal set if and only if $U^{T} U=I_{n}$.

A set of vectors $\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\boldsymbol{t}}\right\}$ in a subspace W of \mathbb{R}^{n} is

- an orthogonal basis if it is an orthogonal set that is a basis for W
- an orthonormal basis if it is an orthonormal set that is a basis for W.

One reason orthonormal bases are useful is because it is easy to find the weights/coordinates in such a basis: if $\mathcal{U}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{t}}\right\}$ is an orthonormal basis ${ }^{1}$ for W, and $\mathbf{w}=c_{1} \mathbf{u}_{\mathbf{1}}+\cdots+c_{t} \mathbf{u}_{\mathbf{t}} \in W$, then $c_{i}=\mathbf{u}_{\mathbf{i}} \cdot \mathbf{w}$. Put another way,

$$
[\mathbf{w}]_{\mathcal{U}}=\left[\begin{array}{c}
\mathbf{u}_{\mathbf{1}} \cdot \mathbf{w} \\
\mathbf{u}_{\mathbf{2}} \cdot \mathbf{w} \\
\vdots \\
\mathbf{u}_{\mathbf{t}} \cdot \mathbf{w}
\end{array}\right] \quad \text { for } \mathbf{w} \in W
$$

C. Consider the plane H in \mathbb{R}^{3} consisting of points that satisfy the equation $4 x+y+z=0$.
(1) Is H a subspace of \mathbb{R}^{3} ?
(2) Find a basis ${ }^{2}$ for H. Is it an orthonormal basis?
(3) Consider the vectors $\mathbf{u}=\left[\frac{-1}{3}, \frac{2}{3}, \frac{2}{3}\right]^{T}, \mathbf{v}=\left[0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]^{T}$. Are $\mathbf{u}, \mathbf{v} \in H$?
(4) Is $\{\mathbf{u}, \mathbf{v}\}$ an orthonormal set?
(5) Explain why $\mathcal{U}=\{\mathbf{u}, \mathbf{v}\}$ is an orthonormal basis for H.
(6) Find the \mathcal{U}-coordinates of the point $[-1,1,3]^{T}$.

DEFINITION: The orthogonal complement of a subspace $W \subseteq \mathbb{R}^{n}$ is the set of vectors that are orthogonal to every vector in W. We write W^{\perp} for the orthogonal complement of W. It is also a subspace of \mathbb{R}^{n}.

THEOREM: If W is a subspace of \mathbb{R}^{n}, then any vector $\mathbf{v} \in \mathbb{R}^{n}$ can be written as $\mathbf{v}=\hat{\mathbf{v}}+\mathbf{z}$ with $\hat{\mathbf{v}} \in W$ and $\mathbf{z} \in W^{\perp}$ in exactly one way. The vector $\hat{\mathbf{v}}$ is called the projection of \mathbf{v} onto W, written as $\operatorname{proj}_{W}(\mathbf{v})$. $\operatorname{proj}_{W}(\mathbf{v})$ is the closest point to \mathbf{v} on W.

FORMULA (IF YOU HAVE AN ORTHONORMAL BASIS): If $\mathcal{U}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{t}}\right\}$ is an orthonormal basis ${ }^{3}$ for W, then

$$
\operatorname{proj}_{W}(\mathbf{v})=\left(\mathbf{v} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{v} \cdot \mathbf{u}_{\mathbf{t}}\right) \mathbf{u}_{\mathbf{t}}
$$

In terms of matrices, if $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{\mathbf{n}}\end{array}\right]$, then $\operatorname{proj}_{W}(\mathbf{v})=U U^{T} \mathbf{v}$.
D. Projection onto a line. Let W be the line through the origin and the point $[1,3]^{T}$ in \mathbb{R}^{2}.
(1) Draw W and W^{\perp}.
(2) Find ${ }^{4}$ a basis for W.
(3) A set with one element is automatically orthogonal; there's no condition. Find an orthonormal basis for W.
(4) Find the projection of the point $[0,2]^{T}$ onto W. Do the same for $[-5,-5]^{T}$.
(5) Find a basis ${ }^{5}$ for W^{\perp}.

[^0]
E. Projections. Suppose that W is a subspace of \mathbb{R}^{n}.

(1) Using the fact that $\operatorname{proj}_{W}(\mathbf{v})$ is the closest point to \mathbf{v} on W, explain why $\operatorname{proj}_{W}(\mathbf{w})=\mathbf{w}$ for any point $\mathbf{w} \in W$.
(2) Now, suppose that $\mathcal{U}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{t}}\right\}$ is an orthonormal basis for W. Use the formula above to show 6 that $\operatorname{proj}_{W}(\mathbf{w})=\mathbf{w}$ for any point $\mathbf{w} \in W$.
(3) Explain why $\operatorname{proj}_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation. If $\mathcal{U}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{t}}\right\}$ is an orthonormal basis for W, what is the standard matrix of proj_{W} ? What is its range?

F*. Projections and orthogonal complements. Let W be a subspace of \mathbb{R}^{n}. For this problem, think about projection in terms of its definition.
(1) What is the kernel of the linear transformation $\operatorname{proj}_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?
(2) Explain why $\mathbf{v}=\operatorname{proj}_{W}(\mathbf{v})+\operatorname{proj}_{W^{\perp}}(\mathbf{v})$ for every $\mathbf{v} \in \mathbb{R}^{n}$.

G*. Projection as closest point.

(1) Explain why if \mathbf{a} and \mathbf{b} are orthogonal, then $\|\mathbf{a}+\mathbf{b}\| \geq\|\mathbf{a}\|$, and if $\mathbf{b} \neq \mathbf{0}$, then $\|\mathbf{a}+\mathbf{b}\|>\|\mathbf{a}\|$.
(2) Explain why ${ }^{7}$ if $\mathbf{v}=\hat{\mathbf{v}}+\mathbf{z}$ with $\hat{\mathbf{v}} \in W$ and $\mathbf{z} \in W^{\perp}$, then $\hat{\mathbf{v}}$ is the closest point in W to \mathbf{v}.

If $T: V \rightarrow W$ is a linear transformation, then the following form of the rank-nullity theorem holds:

$$
\operatorname{dim}(\operatorname{Range}(T))+\operatorname{dim}(\operatorname{Kernel}(T))=\operatorname{dim}(V)
$$

To turn T into a matrix, we need a basis for V (to turn V into stacks of numbers) and a basis for W (to turn W into stack of numbers). If $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \ldots, \mathbf{c}_{\mathbf{m}}\right\}$, then the matrix of T with respect to these bases is the matrix M such that $M \cdot[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{C}}$. It is given by the formula

$$
M=\left[\begin{array}{lll}
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}} & \cdots & \left.\left[T\left(\mathbf{b}_{\mathbf{n}}\right)\right]_{\mathcal{C}}\right]
\end{array}\right]
$$

H. Let P_{n} be the vector space of polynomials of degree at most n. Let $a_{0}, a_{1}, \ldots, a_{n}$ be $n+1$ distinct real numbers.
(1) Explain why the map $E: P_{n} \rightarrow \mathbb{R}^{n+1}$ given by $E(p(t))=\left[\begin{array}{llll}p\left(a_{0}\right) & p\left(a_{1}\right) & \cdots & p\left(a_{n}\right)\end{array}\right]^{T}$ is a linear transformation.
(2) What is the kernel of E ?
(3) What is dimension of the range of E ?
(4) What is the range of E ?
(5) Explain why, if $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ are any $n+1$ points with different x-coordinates, there is a polynomial of degree at most n whose graph passes through these points.
(6) Find the matrix of E with respect to the bases $\mathcal{B}=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ and $\mathcal{E}=\left\{\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}+\mathbf{1}}\right\}$.
(7) Explain why the matrix from the previous part is invertible.
(8) In the context of part (5), how many polynomials of degree at most n pass through these points?
(9) If $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ are any $n+1$ points with different x-coordinates, and $m>n$, is there is a polynomial of degree at most m whose graph passes through these points? How many?
(10) If $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ are any $n+1$ points with different x-coordinates, and $m<n$, is there is a polynomial of degree at most m whose graph passes through these points? How many?

[^1]
[^0]: ${ }^{1}$ Warning: This is ONLY true for an ORTHONORMAL basis. That's why we like them so much.
 ${ }^{2}$ Hint: H is the null space of a 1×3 matrix.
 ${ }^{3}$ Warning: This formula ONLY works for an ORTHONORMAL basis!
 ${ }^{4}$ Hint: Don't compute anything!
 ${ }^{5}$ Start by finding a vector in W^{\perp}.

[^1]: ${ }^{6}$ Hint: You can write $\mathbf{w}=c_{1} \mathbf{u}_{\mathbf{1}}+\cdots+c_{t} \mathbf{u}_{\mathbf{t}}$ for some numbers $c_{1}, \ldots, c_{t} \in \mathbb{R}$
 ${ }^{7}$ Hint: We can write any point in W as $\hat{\mathbf{v}}-\mathbf{w}$ for some other point $\mathbf{w} \in W$. Take $\mathbf{a}=\mathbf{z}$ and $\mathbf{b}=\mathbf{w}$ in the previous part.

