Math 314. Week 10 worksheet (§5.3, §5.4, §5.5).

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& P=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{\mathbf{n}}
\end{array}\right] \text { where } \mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}} \text { are } n \text { linearly independent eigenvectors for } A \\
& A=P D P^{-1} \Longleftrightarrow D \\
& \text { with } D \text { diagonal }
\end{aligned} \Longleftrightarrow\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] \text { where } \lambda_{\mathbf{i}} \text { is the eigenvalue of } \mathbf{b}_{\mathbf{i}} .
$$

DEFINITION: An $n \times n$ matrix A is diagonalizable if we can write $A=P D P^{-1}$ for some invertible matrix P and some diagonal matrix D.

THEOREM: An $n \times n$ matrix A is diagonalizable if and only if the dimensions of its eigenspaces add up to n. When this happens, if you take a basis for each eigenspace, and combine these bases together, you get a set of n linearly independent eigenvectors for A.

THEOREM: If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable. However, not every diagonalizable $n \times n$ matrix has n distinct eigenvalues.
A. DiAgonalizing a matrix. Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$. Our goal in this problem diagonalize A.
(1) Find the eigenvalues of A : compute the characteristic polynomial, and find its roots.
(2) For each eigenvalue, find a basis for the eigenspace. ${ }^{1}$
(3) Put together all of the bases for the different eigenspaces into one set; you should have 2 here. Stack them together to form P.
(4) Put the corresponding eigenvalues on the diagonal in the some order to get D.
B. DIAGONALIZING ANOTHER MATRIX? Let $B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$. Explain why the eigenvalues of B are 2 and 3. Find the dimensions of the $\lambda=2$ and $\lambda=3$ eigenspaces. Is B diagonalizable?

C. DiAgonalization and powers.

(1) If $D=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$, find a formula for every ${ }^{2}$ power D^{n} of D.
(2) If $D=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 3\end{array}\right]$, what happens to D^{n} as $n \rightarrow \infty$?
(3) If $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$, what happens to D^{n} as $n \rightarrow \infty$?
(4) If $A=P D P^{-1}$, explain why $A^{n}=P D^{n} P^{-1}$ for every ${ }^{3} n$.
(5) If A is a 2×2 matrix, and all of its eigenvalues are larger than 1 , what happens to A^{n} as $n \rightarrow \infty$?
(6) If A is a 2×2 matrix, and all of its eigenvalues are between 0 and 1 , what happens to A^{n} as $n \rightarrow \infty$?

[^0]DEfinition: If $T: V \rightarrow V$ is a linear transformation, and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for V, then the \mathcal{B}-matrix of T is the matrix such that $[T]_{\mathcal{B}} \cdot[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{B}}$ for all $\mathbf{v} \in V$. It is given by the formula

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
{\left[T\left(\mathbf{b}_{\mathbf{1}}\right)\right]_{\mathcal{B}}} & \cdots & \left.T\left(\mathbf{b}_{\mathbf{n}}\right)\right]_{\mathcal{B}}
\end{array}\right] .
$$

D. The \mathcal{B}-matrix of a Linear transformation on polynomials. Let P_{3} be the vector space of all polynomials of degree at most 3. Consider the function $D: P \rightarrow P$ given by $D(f(t))=\frac{d f}{d t}$. We checked last time that this is a linear transformation. Take the basis $\mathcal{B}=\left\{t^{3}, t^{2}, t, 1\right\}$ for P_{3}. Find the \mathcal{B}-matrix for D. Is it diagonalizable?
E. The \mathcal{B}-matrix of a linear transformation on other functions. Let $\operatorname{Fun}(\mathbb{R}, \mathbb{R})$ be the vector space of all real valued functions. Let $S=\operatorname{Span}\{\sin (x), \cos (x)\}$.
(1) Are $\sin (x)$ and $\cos (x)$ linearly independent? ${ }^{4}$
(2) Find a basis \mathcal{B} for S. What is $\operatorname{dim}(S)$?
(3) Consider the linear transformation $D: S \rightarrow S$ given by $D(f(x))=\frac{d f}{d x}$. Find the \mathcal{B}-matrix for D.
(4) Find the \mathcal{B}-matrix for D^{2}.
F. The \mathcal{B}-matrix of a Linear transformation on matrices. Consider the vector space $M_{2 \times 2}$ of 2×2 matrices. Take the basis $\mathcal{B}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$. Let $F: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the function $F(X)=\left[\begin{array}{cc}4 & -6 \\ -2 & 3\end{array}\right] X$.
(1) Show that the function F is a linear transformation.
(2) Find the \mathcal{B}-matrix for F.
(3) Find a basis for the null space of $[F]_{\mathcal{B}}$. Use this to find a basis for the kernel of F.
(4) Find a basis for the column space of $[F]_{\mathcal{B}}$. Use this to find a basis for the range of F.
(5) Let $G: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the function $G(X)=X+\left[\begin{array}{cc}4 & -6 \\ -2 & 3\end{array}\right]$. Can you find the \mathcal{B} matrix of G ?

Recall from last time that $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is the matrix such that $P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}$ for all $\mathbf{v} \in V$. If \mathcal{B} and \mathcal{C} are two different bases for V, and $T: V \rightarrow V$ is a linear transformation, then $[T]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot[T]_{\mathcal{B}} \cdot P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$.

G. MATRICES FOR LINEAR TRANSFORMATIONS AND DIAGONALIZATION.

(1) Explain why the formula $[T]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot[T]_{\mathcal{B}} \cdot P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$ is true.
(2) If $V=\mathbb{R}^{n}$ and \mathcal{C} is the standard basis $\left\{\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}\right\}$ explain how $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and $P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$ are related to $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{\mathbf{n}}\end{array}\right]$.
(3) If $V=\mathbb{R}^{n}$ and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ are all eigenvectors for T with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (respectively) use the definition of \mathcal{B}-matrix to compute $[T]_{\mathcal{B}}$.
(4) In the setting of part (2) and (3), plug in all the pieces into the formula $[T]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot[T]_{\mathcal{B}} \cdot P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$, and compare to the formula on the first page.
(5) Explain the following: two matrices are similar if they correspond to the same linear transformation in different bases.
(6) Explain the following: an $n \times n$ matrix A is diagonalizable if and only if there is a basis \mathcal{B} of \mathbb{R}^{n} such that the \mathcal{B}-matrix of the transformation $\mathrm{x} \mapsto A \mathrm{x}$ is a diagonal matrix.

[^1]
[^0]: ${ }^{1}$ Remember that the λ-eigenspace is the null space of $A-\lambda I$.
 ${ }^{2}$ Hint: Start with $n=2$, then $n=3, \ldots$
 ${ }^{3}$ Hint: Start with $n=2$, then $n=3, \ldots$

[^1]: ${ }^{4}$ Hint: if $a \sin (x)+b \cos (x)=0$, plug in $x=0$ and $x=\pi / 2$.

