If A is an $n \times n$ matrix, then

 $P = \begin{bmatrix} \mathbf{b_1} & \cdots & \mathbf{b_n} \end{bmatrix} \text{ where } \mathbf{b_1}, \dots, \mathbf{b_n} \text{ are } n \text{ linearly independent eigenvectors for } A$ with $D \text{ diagonal} \iff D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \text{ where } \lambda_{\mathbf{i}} \text{ is the eigenvalue of } \mathbf{b_i}.$

DEFINITION: An $n \times n$ matrix A is **diagonalizable** if we can write $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.

THEOREM: An $n \times n$ matrix A is diagonalizable if and only if the dimensions of its eigenspaces add up to n. When this happens, if you take a basis for each eigenspace, and combine these bases together, you get a set of n linearly independent eigenvectors for A.

THEOREM: If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable. However, not every diagonalizable $n \times n$ matrix has n distinct eigenvalues.

- A. DIAGONALIZING A MATRIX. Let $A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$. Our goal in this problem diagonalize A.
 - (1) Find the eigenvalues of A: compute the characteristic polynomial, and find its roots.
 - (2) For each eigenvalue, find a basis for the eigenspace. 1
 - (3) Put together all of the bases for the different eigenspaces into one set; you should have 2 here. Stack them together to form P.
 - (4) Put the corresponding eigenvalues on the diagonal in the some order to get D.

B. DIAGONALIZING ANOTHER MATRIX? Let $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$. Explain why the eigenvalues of B are 2

and 3. Find the dimensions of the $\lambda = 2$ and $\lambda = 3$ eigenspaces. Is B diagonalizable?

C. DIAGONALIZATION AND POWERS. $\begin{bmatrix} \alpha & 0 \end{bmatrix}$

(1) If
$$D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
, find a formula for every² power D^n of D .
(2) If $D = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$ what happens to D^n as $n \to \infty^2$.

(2) If
$$D = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/3 \end{bmatrix}$$
, what happens to D^n as $n \to \infty$?

- (3) If $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, what happens to D^n as $n \to \infty$?
- (4) If $A = PDP^{-1}$, explain why $A^n = PD^nP^{-1}$ for every³ n.
- (5) If A is a 2 × 2 matrix, and all of its eigenvalues are larger than 1, what happens to A^n as $n \to \infty$?
- (6) If A is a 2×2 matrix, and all of its eigenvalues are between 0 and 1, what happens to A^n as $n \to \infty$?

¹Remember that the λ -eigenspace is the null space of $A - \lambda I$.

²Hint: Start with n = 2, then n = 3, ...

³Hint: Start with n = 2, then n = 3, ...

DEFINITION: If $T: V \to V$ is a linear transformation, and $\mathcal{B} = {\mathbf{b_1}, \dots, \mathbf{b_n}}$ is a basis for V, then the \mathcal{B} -matrix of T is the matrix such that $[T]_{\mathcal{B}} \cdot [\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{B}}$ for all $\mathbf{v} \in V$. It is given by the formula

$$[T]_{\mathcal{B}} = \begin{bmatrix} [T(\mathbf{b_1})]_{\mathcal{B}} & \cdots & T(\mathbf{b_n})]_{\mathcal{B}} \end{bmatrix}.$$

D. THE \mathcal{B} -MATRIX OF A LINEAR TRANSFORMATION ON POLYNOMIALS. Let P_3 be the vector space of all polynomials of degree at most 3. Consider the function $D: P \to P$ given by $D(f(t)) = \frac{df}{dt}$. We checked last time that this is a linear transformation. Take the basis $\mathcal{B} = \{t^3, t^2, t, 1\}$ for P_3 . Find the \mathcal{B} -matrix for D. Is it diagonalizable?

E. THE \mathcal{B} -MATRIX OF A LINEAR TRANSFORMATION ON OTHER FUNCTIONS. Let $\operatorname{Fun}(\mathbb{R},\mathbb{R})$ be the vector space of all real valued functions. Let $S = \text{Span}\{\sin(x), \cos(x)\}$.

- (1) Are sin(x) and cos(x) linearly independent?⁴
- (2) Find a basis \mathcal{B} for S. What is dim(S)?
- (3) Consider the linear transformation $D: S \to S$ given by $D(f(x)) = \frac{df}{dx}$. Find the \mathcal{B} -matrix for D.
- (4) Find the \mathcal{B} -matrix for D^2 .

F. THE \mathcal{B} -MATRIX OF A LINEAR TRANSFORMATION ON MATRICES. Consider the vector space $M_{2\times 2}$ F. THE *B*-MATRIX OF A LINEAR TRANSFORMUTION OF M and M a the function $F(X) = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix} X.$

- (1) Show that the function F is a linear transformation.
- (2) Find the \mathcal{B} -matrix for F.
- (3) Find a basis for the null space of $[F]_{\mathcal{B}}$. Use this to find a basis for the kernel of F.
- (4) Find a basis for the column space of $[F]_{\mathcal{B}}$. Use this to find a basis for the range of F.

(5) Let $G : M_{2\times 2} \to M_{2\times 2}$ be the function $G(X) = X + \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}$. Can you find the \mathcal{B} matrix of G?

Recall from last time that $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is the matrix such that $P_{\mathcal{C}\leftarrow\mathcal{B}}\cdot[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}$ for all $\mathbf{v}\in V$. If \mathcal{B} and \mathcal{C} are two different bases for V, and $T: V \to V$ is a linear transformation, then $[T]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot [T]_{\mathcal{B}} \cdot P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$.

G. MATRICES FOR LINEAR TRANSFORMATIONS AND DIAGONALIZATION.

- (1) Explain why the formula $[T]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot [T]_{\mathcal{B}} \cdot P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$ is true. (2) If $V = \mathbb{R}^n$ and \mathcal{C} is the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ explain how $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and $P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$ are related to $P_{\mathcal{B}} = |\mathbf{b_1} \cdots \mathbf{b_n}|.$
- (3) If $V = \mathbb{R}^n$ and $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ are all eigenvectors for T with eigenvalues $\lambda_1, \dots, \lambda_n$ (respectively) use the definition of \mathcal{B} -matrix to compute $[T]_{\mathcal{B}}$.
- (4) In the setting of part (2) and (3), plug in all the pieces into the formula $[T]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot [T]_{\mathcal{B}} \cdot P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}$, and compare to the formula on the first page.
- (5) Explain the following: two matrices are similar if they correspond to the same linear transformation in different bases.
- (6) Explain the following: an $n \times n$ matrix A is diagonalizable if and only if there is a basis \mathcal{B} of \mathbb{R}^n such that the \mathcal{B} -matrix of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is a diagonal matrix.

⁴Hint: if $a\sin(x) + b\cos(x) = 0$, plug in x = 0 and $x = \pi/2$.