- basis A set \mathcal{B} of vectors in a vector space V is a BASIs for V if
(i) \mathcal{B} is linearly independent
(ii) \mathcal{B} spans V.
- change-of-coordinates matrix
(1) The change-of-coordinates matrix associated to a basis \mathcal{B} of \mathbf{R}^{n} is the matrix $P_{\mathcal{B}}$ such that $P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(2) The ChANGE-OF-COORDINATES MATRIX associated to the pair of bases \mathcal{B} and \mathcal{C} of a vector space V is the matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ such that $P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}$ for all $\mathbf{v} \in V$.
- characteristic polynomial The Characteristic polynomial of a matrix A is the polynomial function of λ given by $\operatorname{det}(A-\lambda I)$.
- column space The COLUMN Space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{m} spanned by the columns of A. We denote this by $\operatorname{Col}(A)$.
- consistent A linear system is CONSISTENT if it has a solution.
- determinant The DETERMINANT of an $n \times n$ matrix A is the number obtained from A by recursively applying Laplace expansion along rows or columns, and for 1×1 matrices is just the value of its entry. We write $\operatorname{det}(A)$ for the determinant of A.
- diagonalizable An $n \times n$ matrix is diAgonalizable if it is similar to a diagonal matrix.
- dimension The dimension of a vector space V is the number of vectors in any basis for V. We denote this by $\operatorname{dim}(V)$.
- eigenvector If A is an $n \times n$ matrix, a nonzero vector $\mathbf{v} \in \mathbb{R}^{n}$ is an EIGENVECTOR for A if $A \mathbf{v}=\lambda \mathbf{v}$ for some scalar λ.
- eigenvalue
(1) If A is an $n \times n$ matrix, and \mathbf{v} is an eigenvector for A, then λ is the EIGENVALUE associated to \mathbf{v} if $A \mathbf{v}=\lambda \mathbf{v}$.
(2) If A is an $n \times n$ matrix, then λ is an EIGENVALUE of A if $A \mathbf{v}=\lambda \mathbf{v}$ for some nonzero vector \mathbf{v}.
- eigenspace If A is an $n \times n$ matrix, and λ is an eigenvalue for A, the λ-EIgEnspace of A is $\operatorname{Null}(A-\lambda I)$.
- homogeneous A linear system is homogeneous if the constant part of each equation is zero.
- inverse
(1) The inverse of an $n \times n$ matrix A, if it exists, is the matrix B such that $A B=B A=I_{n}$. We write A^{-1} for the inverse of A.
(2) The inverse of a linear transformation $T: V \rightarrow W$, if it exists, is the linear transformation $U: W \rightarrow V$ such that $T \circ U=\operatorname{id}_{W}$ and $U \circ T=\operatorname{id}_{V}$. We write T^{-1} for the inverse of T.
- invertible
(1) A matrix is invertible if it has an inverse.
(2) A linear transformation is INVERTIBLE if it has an inverse.
- kernel The kernel of a linear transformation $T: V \rightarrow W$ is the set of all $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{0}$.
- least-squares solution A vector \mathbf{v} is a LEAST-SquARES SOLUTION to a linear system $A \mathbf{x}=\mathbf{b}$ if $\|\mathbf{b}-A \mathbf{v}\| \leq\|\mathbf{b}-A \mathbf{x}\|$ for all vectors \mathbf{x}.
- linear combination
(1) The Linear combination of the set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ with weights c_{1}, \ldots, c_{t} is the vector $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}$.
(2) A Linear combination of the set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is a vector of the form $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}$ for some c_{1}, \ldots, c_{t}.
- linear transformation A function between two vector spaces $T: V \rightarrow W$ is a LINEAR TransFORMATION if the following conditions hold:
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V \quad$ " T preserves addition"
(ii) $T(c \mathbf{v})=c T(\mathbf{v})$ for all $c \in \mathbb{R}, \mathbf{v} \in V \quad$ " T preserves scalar multiplication."
- linearly dependent A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is LINEARLY DEPENDENT if $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}=\mathbf{0}$ has a solution other than $c_{1}=\cdots=c_{t}=0$.
- linearly independent A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is LINEARLY INDEPENDENT if the only solution to $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}=\mathbf{0}$ is the solution $c_{1}=\cdots=c_{t}=0$.
- \mathcal{B}-matrix If \mathcal{B} is a basis for V, and $T: V \rightarrow V$ is a linear transformation, the \mathcal{B}-matrix of T is the matrix $[T]_{\mathcal{B}}$ such that $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{B}}$ for all $\mathbf{v} \in V$.
- matrix transformation A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a MATRIX TRANSFORMATION if there is an $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
- null space The nULL space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} consisting of all solutions \mathbf{x} to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$. We denote this by $\operatorname{Null}(A)$.
- one-to-one A function $f: V \rightarrow W$ is ONE-TO-ONE if $v \neq w$ implies $f(v) \neq f(w)$.
- onto A function $f: V \rightarrow W$ is onto if for every $w \in W$ can be written as $w=f(v)$ for some $v \in V$.
- orthogonal
(1) Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ are ORThogonal if $\mathbf{v} \cdot \mathbf{w}=0$.
(2) A set of vectors in \mathbb{R}^{n} is ORTHOGONAL if each pair of vectors in the set is orthogonal.
(3) A matrix is ORThoGONAL if it is square, and its columns form an orthonomal set.
- orthogonal complement The orthogonal complement of a subspace $H \subseteq \mathbb{R}^{n}$ is the set of vectors in \mathbb{R}^{n} that are orthogonal to every vector in H. It is denoted H^{\perp}.
- orthonormal A set of vectors is ORTHONORMAL if it is an orthogonal set of unit vectors.
- projection The projection of a vector \mathbf{v} onto the subspace H of \mathbb{R}^{n} is the unique vector $\hat{\mathbf{v}} \in H$ such that $\mathbf{v}-\hat{\mathbf{v}} \in H^{\perp}$. It is denoted $\operatorname{proj}_{H}(\mathbf{v})$.
- range The RANGE of a function $f: V \rightarrow W$ is the subset of W consisting of $f(v)$ for all $v \in V$.
- rank The Rank of a matrix A is the number of pivots of A in an echelon form for A.
- similar Two $n \times n$ matrices A and B are similar if there is an invertible matrix S such that $A=S B S^{-1}$.
- solution An ordered set of numbers $\left(a_{1}, \ldots, a_{n}\right)$ is a SOLUTION to a linear system if each equation in the system holds true when a_{i} is substituted in for the i th variable.
- solution set The solution set of a linear system is the set of all solutions to a linear system.
- span The Span of a set of vectors S is the set of all linear combinations of S. We write $\operatorname{Span}\{S\}$ for the span of S.
- spans A set of vectors SPANS a vector space if its span is that vector space.
- standard matrix The standard matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the $m \times n$ matrix such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
- subspace A subset H of a vector space V is a SUBSPACE if the following three conditions hold:
(i) $\mathbf{0} \in H$
(ii) $\mathbf{u}, \mathbf{v} \in H \Longrightarrow \mathbf{u}+\mathbf{v} \in H \quad$ " H is closed under addition"
(iii) $c \in \mathbb{R}, \mathbf{v} \in H \Longrightarrow c \mathbf{v} \in H \quad$ " H is closed under scalar multiplication."
- symmetric A matrix A is symmetric if $A^{T}=A$.
- vector
(1) A vector in \mathbb{R}^{n} is an n-tuple of real numbers, which we write as
(2) A vector in a vector space V is an element of the set V.
$\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$
- vector space A vector space is a set V with two operations, which we call addition $V \times V \rightarrow V$ and scalar multiplication $\mathbb{R} \times V \rightarrow V$, that are subject to a number of conditions.
- vector of \mathcal{B}-coordinates If $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for V, the VECTOR OF \mathcal{B}-COORDINATES of a vector $\mathbf{v} \in V$ is the vector $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^{n}$ determined by the rule

$$
[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \Longleftrightarrow \mathbf{v}=c_{1} \mathbf{b}_{\mathbf{1}}+\cdots+c_{n} \mathbf{b}_{\mathbf{n}}
$$

- $[T]_{\mathcal{B}}: \mathcal{B}$-matrix
- $[\mathbf{x}]_{\mathcal{B}}$: vector of \mathcal{B}-coordinates
- $\operatorname{Span}(S)$: span
- $\operatorname{dim}(V)$: dimension
- $\operatorname{proj}_{W}(\mathbf{x}):$ projection
- $P_{\mathcal{B}}$: change-of-coordinates matrix
- $P_{\mathcal{C} \leftarrow \mathcal{B}}$: change-of-coordinates matrix
- H^{\perp} : orthogonal complement
- $\operatorname{Col}(A)$: column space
- $\operatorname{Null}(A)$: null space
- $\operatorname{Ker}(T)$: kernel
- A^{-1} : inverse

