Definitions for Math 314

- **basis** A set \mathcal{B} of vectors in a vector space V is a BASIS for V if
 - (i) \mathcal{B} is linearly independent
 - (ii) \mathcal{B} spans V.
- change-of-coordinates matrix
 - (1) The CHANGE-OF-COORDINATES MATRIX associated to a basis \mathcal{B} of \mathbf{R}^n is the matrix $P_{\mathcal{B}}$ such that $P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - (2) The CHANGE-OF-COORDINATES MATRIX associated to the pair of bases \mathcal{B} and \mathcal{C} of a vector space V is the matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ such that $P_{\mathcal{C}\leftarrow\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$ for all $\mathbf{v}\in V$.
- characteristic polynomial The CHARACTERISTIC POLYNOMIAL of a matrix A is the polynomial function of λ given by det $(A \lambda I)$.
- column space The COLUMN SPACE of an $m \times n$ matrix A is the subspace of \mathbb{R}^m spanned by the columns of A. We denote this by $\operatorname{Col}(A)$.
- consistent A linear system is CONSISTENT if it has a solution.
- determinant The DETERMINANT of an $n \times n$ matrix A is the number obtained from A by recursively applying Laplace expansion along rows or columns, and for 1×1 matrices is just the value of its entry. We write det(A) for the determinant of A.
- diagonalizable An $n \times n$ matrix is DIAGONALIZABLE if it is similar to a diagonal matrix.
- dimension The DIMENSION of a vector space V is the number of vectors in any basis for V. We denote this by $\dim(V)$.
- eigenvector If A is an $n \times n$ matrix, a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ is an EIGENVECTOR for A if $A\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ .
- eigenvalue
 - (1) If A is an $n \times n$ matrix, and **v** is an eigenvector for A, then λ is the EIGENVALUE associated to **v** if $A\mathbf{v} = \lambda \mathbf{v}$.
 - (2) If A is an $n \times n$ matrix, then λ is an EIGENVALUE of A if $A\mathbf{v} = \lambda \mathbf{v}$ for some nonzero vector \mathbf{v} .
- eigenspace If A is an $n \times n$ matrix, and λ is an eigenvalue for A, the λ -EIGENSPACE of A is Null $(A \lambda I)$.
- homogeneous A linear system is HOMOGENEOUS if the constant part of each equation is zero.
- inverse
 - (1) The INVERSE of an $n \times n$ matrix A, if it exists, is the matrix B such that $AB = BA = I_n$. We write A^{-1} for the inverse of A.
 - (2) The INVERSE of a linear transformation $T: V \to W$, if it exists, is the linear transformation $U: W \to V$ such that $T \circ U = \mathrm{id}_W$ and $U \circ T = \mathrm{id}_V$. We write T^{-1} for the inverse of T.
- invertible
 - (1) A matrix is INVERTIBLE if it has an inverse.
 - (2) A linear transformation is INVERTIBLE if it has an inverse.
- kernel The KERNEL of a linear transformation $T: V \to W$ is the set of all $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{0}$.
- least-squares solution A vector \mathbf{v} is a LEAST-SQUARES SOLUTION to a linear system $A\mathbf{x} = \mathbf{b}$ if $||\mathbf{b} A\mathbf{v}|| \le ||\mathbf{b} A\mathbf{x}||$ for all vectors \mathbf{x} .

• linear combination

- (1) The LINEAR COMBINATION of the set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ with weights c_1, \ldots, c_t is the vector $c_1\mathbf{v}_1 + \cdots + c_t\mathbf{v}_t$.
- (2) A LINEAR COMBINATION of the set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ is a vector of the form $c_1\mathbf{v}_1 + \cdots + c_t\mathbf{v}_t$ for some c_1, \ldots, c_t .
- linear transformation A function between two vector spaces $T: V \to W$ is a LINEAR TRANS-FORMATION if the following conditions hold:
 - (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$ "*T* preserves addition"
 - (ii) $T(c\mathbf{v}) = cT(\mathbf{v})$ for all $c \in \mathbb{R}, \mathbf{v} \in V$
- linearly dependent A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ is LINEARLY DEPENDENT if $c_1\mathbf{v}_1 + \cdots + c_t\mathbf{v}_t = \mathbf{0}$ has a solution other than $c_1 = \cdots = c_t = 0$.

"T preserves scalar multiplication."

- linearly independent A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ is LINEARLY INDEPENDENT if the only solution to $c_1\mathbf{v}_1 + \cdots + c_t\mathbf{v}_t = \mathbf{0}$ is the solution $c_1 = \cdots = c_t = 0$.
- \mathcal{B} -matrix If \mathcal{B} is a basis for V, and $T: V \to V$ is a linear transformation, the \mathcal{B} -MATRIX of T is the matrix $[T]_{\mathcal{B}}$ such that $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{B}}$ for all $\mathbf{v} \in V$.
- matrix transformation A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a MATRIX TRANSFORMATION if there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.
- null space The NULL SPACE of an $m \times n$ matrix A is the subspace of \mathbb{R}^n consisting of all solutions \mathbf{x} to the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. We denote this by Null(A).
- one-to-one A function $f: V \to W$ is ONE-TO-ONE if $v \neq w$ implies $f(v) \neq f(w)$.
- onto A function $f: V \to W$ is ONTO if for every $w \in W$ can be written as w = f(v) for some $v \in V$.
- orthogonal
 - (1) Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are ORTHOGONAL if $\mathbf{v} \cdot \mathbf{w} = 0$.
 - (2) A set of vectors in \mathbb{R}^n is ORTHOGONAL if each pair of vectors in the set is orthogonal.
 - (3) A matrix is ORTHOGONAL if it is square, and its columns form an orthonomal set.
- orthogonal complement The ORTHOGONAL COMPLEMENT of a subspace $H \subseteq \mathbb{R}^n$ is the set of vectors in \mathbb{R}^n that are orthogonal to every vector in H. It is denoted H^{\perp} .
- orthonormal A set of vectors is ORTHONORMAL if it is an orthogonal set of unit vectors.
- projection The PROJECTION of a vector \mathbf{v} onto the subspace H of \mathbb{R}^n is the unique vector $\hat{\mathbf{v}} \in H$ such that $\mathbf{v} - \hat{\mathbf{v}} \in H^{\perp}$. It is denoted $\operatorname{proj}_H(\mathbf{v})$.
- range The RANGE of a function $f: V \to W$ is the subset of W consisting of f(v) for all $v \in V$.
- rank The RANK of a matrix A is the number of pivots of A in an echelon form for A.
- similar Two $n \times n$ matrices A and B are SIMILAR if there is an invertible matrix S such that $A = SBS^{-1}$.
- solution An ordered set of numbers (a_1, \ldots, a_n) is a SOLUTION to a linear system if each equation in the system holds true when a_i is substituted in for the *i*th variable.
- solution set The SOLUTION SET of a linear system is the set of all solutions to a linear system.
- span The SPAN of a set of vectors S is the set of all linear combinations of S. We write $\text{Span}\{S\}$ for the span of S.
- spans A set of vectors SPANS a vector space if its span is that vector space.
- standard matrix The STANDARD MATRIX of a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is the $m \times n$ matrix such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

- subspace A subset H of a vector space V is a SUBSPACE if the following three conditions hold: (i) $\mathbf{0} \in H$
 - (ii) $\mathbf{u}, \mathbf{v} \in H \implies \mathbf{u} + \mathbf{v} \in H$ "H is closed under addition"
 - (iii) $c \in \mathbb{R}, \mathbf{v} \in H \implies c\mathbf{v} \in H$ "H is closed under scalar multiplication."
- symmetric A matrix A is symmetric if $A^T = A$.
- vector
- vector (1) A VECTOR in \mathbb{R}^n is an *n*-tuple of real numbers, which we write as $\begin{bmatrix} a_1 \\ \vdots \\ \vdots \end{bmatrix}$.
 - (2) A VECTOR in a vector space V is an element of the set V.
- vector space A VECTOR SPACE is a set V with two operations, which we call addition $V \times V \to V$ and scalar multiplication $\mathbb{R} \times V \to V$, that are subject to a number of conditions.
- vector of \mathcal{B} -coordinates If $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is a basis for V, the VECTOR OF \mathcal{B} -COORDINATES of a vector $\mathbf{v} \in V$ is the vector $[\mathbf{v}]_{\mathcal{B}} \in \mathbb{R}^n$ determined by the rule

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \iff \mathbf{v} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}$$

NOTATION

- $[T]_{\mathcal{B}}$: \mathcal{B} -matrix
- $[\mathbf{x}]_{\mathcal{B}}$: vector of \mathcal{B} -coordinates
- $\operatorname{Span}(S)$: span
- $\dim(V)$: dimension
- $\operatorname{proj}_W(\mathbf{x})$: projection
- $P_{\mathcal{B}}$: change-of-coordinates matrix
- $P_{\mathcal{C}\leftarrow\mathcal{B}}$: change-of-coordinates matrix
- H^{\perp} : orthogonal complement
- Col(A): column space
- Null(A): null space
- $\operatorname{Ker}(T)$: kernel
- A^{-1} : inverse