Chapter 1.

Concepts.

- linear system
- homogeneous linear system
- solution / solution set
- \mathbb{R}^n
- linear combination of a set of vectors in \mathbb{R}^n
- span of a set of vectors in \mathbb{R}^n
- matrix-times-vector multiplication / the purpose of a matrix
- pivots of a matrix
- linear independence in \mathbb{R}^n
- linear transformations $\mathbb{R}^n \to \mathbb{R}^m$
- relationship between a linear transformations $\mathbb{R}^n \to \mathbb{R}^m$ and matrices
- one-to-one function
- onto function
- domain and codomain of a function
- range of a function
- relationship between range of a linear transformation and standard matrix

Skills.

- row reduce a matrix
- solve a linear system
- express solutions of linear systems in parametric vector form
- determine if a linear system $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b}
- determine if a linear system $A\mathbf{x} = \mathbf{b}$ has at least one solution for every \mathbf{b}
- relate information about the solution set of the homogeneous equation $A\mathbf{x} = \mathbf{0}$ to the nonhomogeneous equation $A\mathbf{x} = \mathbf{b}$
- express the solution set of a homogeneous linear system as the span of a set of vectors
- determine if a set of vectors in \mathbb{R}^n is linearly independent
- determine if a set of vectors in \mathbb{R}^n spans \mathbb{R}^n
- find the standard matrix of a linear transformation $\mathbb{R}^n \to \mathbb{R}^m$
- recognize familiar linear transformations $\mathbb{R}^n \to \mathbb{R}^m$ from their standard matrices
- determine if a linear transformation $\mathbb{R}^n \to \mathbb{R}^m$ is one-to-one
- determine if a linear transformation $\mathbb{R}^n \to \mathbb{R}^m$ is onto

Chapter 2.

Concepts.

- matrix multiplication
- properties of matrix multiplication
- composition of linear transformations and relationship to matrix multiplication
- inverse of a matrix
- inverse of a linear transformation
- invertible matrix
- relationship between invertibility and solution sets of $A\mathbf{x} = \mathbf{b}$
- relationship between invertibility and number of pivots
- invertible linear transformation

Skills.

- multiply matrices and determine when two matrices can be multiplied
- determine if a matrix is invertible, given its entries
- determine if a matrix is invertible, given information about the solutions of $A\mathbf{x} = \mathbf{b}$
- determine if a matrix is invertible, given information about span / linear independence of the columns
- transpose a matrix
- compute the inverse of an invertible matrix

Chapter 3.

Concepts.

- determinant of a matrix
- determinant of a matrix and row operations
- determinant of a matrix and invertibility
- determinants of products of matrices

Skills.

- compute the determinant using cofactor expansion
- compute the determinant using row reduction
- use determinants to determine invertibility

Chapter 4.

Concepts.

- vector space
- subspace of a vector space
- null space of a matrix
- column space a matrix
- linear combination in a general vector space
- span in a general vector space
- linear independence in a general vector space
- basis of a vector space
- dimension of a vector space
- relationship between linear independence, span, and dimension
- linear transformations between two vector spaces
- kernel of a linear transformation
- range of a linear transformation
- coordinates with respect to a basis
- change-of-coordinates matrix

Skills.

- determine if a subset of a vector space is a subspace
- determine if a map between vector spaces is a linear transformation
- find the dimension of a vector space, given a basis
- find the dimension of the null space of a matrix
- find a basis for the null space of a matrix
- find the dimension of the column space of a matrix
- find a basis for the column space of a matrix
- turn information about rank into information about nullity, and vice versa
- find the \mathcal{B} -coordinates of an element in a vector space
- find an element in a vector space, given its \mathcal{B} -coordinates
- find the change-of-coordinates matrix between two bases
- use the change-of-coordinates matrix to change coordinates between two bases

Chapter 5.

Concepts.

- eigenvectors
- eigenvalues
- characteristic polynomial of a matrix
- diagonalization
- \mathcal{B} -matrix

Skills.

- find the eigenvectors and eigenvalues of a matrix
- determine if a matrix is diagonalizable
- diagonalize a diagonalizable matrix
- $\bullet\,$ use diagonalization to describe behavior of A^n for large n
- $\bullet\,$ compute the $\mathcal B\text{-matrix}$ of a linear transformation
- use the \mathcal{B} -matrix of a linear transformation to compute or describe a linear transformation

Chapter 6.

Concepts.

- dot products
- orthogonal vectors
- orthogonal complement
- orthogonal sets
- orthonormal sets
- orthonormal basis
- orthogonal projection
- least-squares solutions

Skills.

- compute the dot product of two vectors
- determine if a pair / set of vectors is orthogonal / orthonormal
- use Gram-Schmidt to turn a set into an orthogonal / orthonormal set
- use an orthogonal / orthonormal basis to compute projections
- find the least-squares solution to a linear system

Chapter 7.

Concepts.

- symmetric matrix
- spectral theorem
- singular values
- singular value decomposition

Skills.

- find an orthogonal diagonalization of a symmetric matrix
- compute a singular value decomposition