Learning Objectives:

• Understand how to construct a singular value decomposition of a matrix

The Singular Values of an $m \times n$ Matrix

Definition: If A is an $m \times n$ matrix, the **singular values** of A are the _____

of the eigenvalues of _____, denoted by $\sigma_1, \ldots, \sigma_n$, and they are arranged in decreasing order.

That is, $\sigma_i = _$ for $1 \le i \le n$, where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$.

Note: The singular values of A are the ______ of the vectors _____

Theorem 7.9. Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of $A^T A$, arranged so that the corresponding eigenvalues of $A^T A$ satisfy ________ and suppose A has _______ nonzero singular values. Then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an _______ for Col A, and rank A = r.

Remark: In practice, the most reliable way to estimate the rank of a large matrix A is to count the number of nonzero singular values.

The Singular Value Decomposition

The decomposition of A involves an $m \times n$ "diagonal" matrix Σ of the form

 $\Sigma =$

where D is an _____ diagonal matrix for some r not exceeding the smaller of m and n.

How to find a singular value decomposition If A is an $m \times n$ matrix...

Step 1: Find an orthogonal diagonalization of $A^T A$. This means to find all the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ (each listed as many times as its multiplicity) and an orthonormal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \mathbb{R}^n consisting of eigenvectors of $A^T A$ (that match up with the eigenvalues, so \mathbf{v}_i has eigenvalue λ_i).

Step 2: Fill in Σ and V. We compute the singular values $\sigma_i = \sqrt{\lambda_i}$, and fill them into Σ , and fill in the columns of V with the corresponding orthonormal basis of eigenvectors for $A^T A$.

Step 3: Construct U. The first $r (= \operatorname{rank}(A))$ columns of U are the normalized (unit length) vectors obtained from $A\mathbf{v}_1, \ldots, A\mathbf{v}_r$. If r < m, then use Gram-Schmidt to complete an orthonormal basis for \mathbb{R}^m .