Learning Objectives:

- Understand how to construct a singular value decomposition of a matrix

The Singular Values of an $m \times n$ Matrix

Definition: If A is an $m \times n$ matrix, the singular values of A are the \qquad of the eigenvalues of \qquad , denoted by $\sigma_{1}, \ldots, \sigma_{n}$, and they are arranged in decreasing order.

That is, $\sigma_{i}=$ \qquad for $1 \leq i \leq n$, where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$.

Note: The singular values of A are the \qquad of the vectors \qquad -

Theorem 7.9. Suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of $A^{T} A$, arranged so that the corresponding eigenvalues of $A^{T} A$ satisfy \qquad and suppose A has \qquad nonzero singular values.

Then $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}\right\}$ is an \qquad for $\operatorname{Col} A$, and $\operatorname{rank} A=r$.

Remark: In practice, the most reliable way to estimate the rank of a large matrix A is to count the number of nonzero singular values.

The Singular Value Decomposition

The decomposition of A involves an $m \times n$ "diagonal" matrix Σ of the form

$$
\Sigma=
$$

where D is an \qquad diagonal matrix for some r not exceeding the smaller of m and n.

Theorem 7.10 (The Singular Value Decomposition).

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ (as shown above) for which the diagonal entries in D are the first \qquad of A, $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, and there exists an $m \times m$ \qquad matrix U and an
$n \times n$ \qquad matrix V such that

$$
A=
$$

How to find a singular value decomposition If A is an $m \times n$ matrix...

Step 1: Find an orthogonal diagonalization of $A^{T} A$. This means to find all the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ (each listed as many times as its multiplicity) and an orthonormal basis $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of \mathbb{R}^{n} consisting of eigenvectors of $A^{T} A$ (that match up with the eigenvalues, so $\mathbf{v}_{\mathbf{i}}$ has eigenvalue λ_{i}).

Step 2: Fill in Σ and V. We compute the singular values $\sigma_{i}=\sqrt{\lambda_{i}}$, and fill them into Σ, and fill in the columns of V with the corresponding orthonormal basis of eigenvectors for $A^{T} A$.

Step 3: Construct U. The first $r(=\operatorname{rank}(A))$ columns of U are the normalized (unit length) vectors obtained from $A \mathbf{v}_{\mathbf{1}}, \ldots, A \mathbf{v}_{\mathbf{r}}$. If $r<m$, then use Gram-Schmidt to complete an orthonormal basis for \mathbb{R}^{m}.

