Learning Objectives:

- Determine whether a matrix is symmetric
- Understand how to orthogonally diagonalize a symmetric matrix

Diagonalization of Symmetric Matrices

Our goal in this section is to connect orthogonality with our knowledge of eigenvalues.

Definition: A matrix A is symmetric if \qquad .

Note that symmetric matrices are necessarily \qquad .

Example Determine if the following matrices are symmetric.
(a) $\left[\begin{array}{rr}2 & 0 \\ 0 & -5\end{array}\right]$
(d) $\left[\begin{array}{rr}6 & 2 \\ -2 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 5 & 0 \\ 2 & 0 & 4\end{array}\right]$
(e) $\left[\begin{array}{rrr}3 & -1 & 2 \\ 0 & 3 & -1 \\ 2 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{rrrr}1 & 3 & 2 & -1 \\ 3 & 2 & -1 & 1 \\ 2 & -1 & 1 & 0\end{array}\right]$
(f) $\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$

Theorem 7.1.
If A is symmetric, then any two eigenvectors from different eigenspaces are \qquad

Definition: An $n \times n$ matrix A is said to be orthogonally diagonalizable if there exists an
\qquad $\operatorname{matrix} P$ and a \qquad matrix D such that

$$
A=
$$

Note: In general, it can be difficult to determine whether a matrix is diagonalizable.

Theorem 7.2. An $n \times n$ matrix A is orthogonally diagonalizable if and only if \qquad

The Spectral Theorem

Theorem 7.3 (The Spectral Theorem for Symmetric Matrices).

An $n \times n$ symmetric matrix A has the following properties:
(a) A has \qquad real eigenvalues, counting multiplicities.
(b) The dimension of the eigenspace for each eigenvalue λ equals the \qquad of λ as a root of the characteristic equation.
(c) The eigenspaces are mutually orthogonal, in the sense that \qquad corresponding to different eigenvalues are orthogonal.
(d) A is orthogonally diagonalizable.

Note: The set of eigenvalues of a matrix A is sometimes called the spectrum of A.

Spectral Decomposition

Suppose $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are the diagonal entries of the diagonal matrix D. Then, since $P^{-1}=P^{T}$,

$$
A=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}
$$

