Learning Objectives:

- Understand how to find a least-squares solution of $A\mathbf{x} = \mathbf{b}$
- Understand how to find the least-squares error of a least-squares solution

Least-Squares Problems

Question: What do we do when $A\mathbf{x} = \mathbf{b}$ has no solution \mathbf{x} ?

Answer: Find $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is as close as possible to **b**.

That is, we want to minimize $||\mathbf{b} - A\hat{\mathbf{x}}||$ (which is why these are called least-squares problems).

 $||\mathbf{b} - A\mathbf{\hat{x}}|| \le 1$

for all \mathbf{x} in \mathbb{R}^n .

The least squares error of the least squares solution is the value $||\mathbf{b} - A\hat{\mathbf{x}}||$.

Theorem 6.13. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the (nonempty) set of all solutions of the normal equations

Example. Find a least-squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 5 \end{bmatrix}$$

Example. Let
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

(a) Determine if $A^T A$ is invertible.

(b) Find a least-squares solution of the inconsistent system $A\mathbf{x} = \mathbf{b}$.

(c) Determine the least-squares error in the least-squares solution of $A\mathbf{x} = \mathbf{b}$.