Learning Objectives:

- Understand how to find a least-squares solution of $A \mathbf{x}=\mathbf{b}$
- Understand how to find the least-squares error of a least-squares solution

Least-Squares Problems

Question: What do we do when $A \mathbf{x}=\mathbf{b}$ has no solution \mathbf{x} ?
Answer: Find $\hat{\mathbf{x}}$ such that $A \hat{\mathbf{x}}$ is as close as possible to \mathbf{b}.
That is, we want to minimize $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ (which is why these are called least-squares problems).

Definition: If A is an $m \times n$ matrix and \mathbf{b} is in \mathbb{R}^{m}, a \qquad solution of $A \mathbf{x}=\mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n}
$$

The least squares error of the least squares solution is the value $\|\mathbf{b}-A \hat{\mathbf{x}}\|$.

Theorem 6.13. The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is the (nonempty) set of all solutions of the normal equations \qquad -

Example. Find a least-squares solution of the inconsistent system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
2 \\
3 \\
5
\end{array}\right]
$$

Theorem 6.14. Let A be an $m \times n$ matrix. The following statements are equivalent:
(a) The equation $A \mathbf{x}=\mathbf{b}$ has a \qquad least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.
(b) The columns of A are \qquad .
(c) The matrix $A^{T} A$ is \qquad .

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$
\hat{\mathbf{x}}=
$$

Example. Let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 2 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(a) Determine if $A^{T} A$ is invertible.
(b) Find a least-squares solution of the inconsistent system $A \mathbf{x}=\mathbf{b}$.
(c) Determine the least-squares error in the least-squares solution of $A \mathbf{x}=\mathbf{b}$.

