Learning Objectives

- Use the Gram-Schmidt process to construct an orthogonal basis for any nonzero subspace of \mathbb{R}^{n}
- Understand how to find a $Q R$ factorization of a matrix with linearly independent columns

The Gram-Schmidt Process

Our goal in this section is to develop a process for producing orthogonal bases for subspaces in \mathbb{R}^{n}.
Example: Suppose $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is a basis for a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W.
Solution: We may as well take our first vector to be the same:

$$
\mathbf{v}_{1}=\mathbf{x}_{1}
$$

We should use \mathbf{x}_{2} and \mathbf{v}_{1} to construct our second vector, \mathbf{v}_{2}, and we can use the Orthogonal Decomposition Theorem (Theorem 6.8) to do this so that \mathbf{v}_{2} and \mathbf{v}_{1} are orthogonal:

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{v}_{1}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}
$$

For our third vector, we can use the same idea: we can project \mathbf{x}_{3} onto the plane $W_{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and subtract that result from \mathbf{x}_{3} using Theorem 6.8:

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\operatorname{proj}_{W_{2}} \mathbf{x}_{3}=\mathbf{x}_{3}-\hat{\mathbf{x}_{3}}=\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}\right)=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}
$$

Theorem 6.11: The Gram-Schmidt Process

Given a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define

$$
\begin{aligned}
& \mathbf{v}_{1}= \\
& \mathbf{v}_{2}= \\
& \mathbf{v}_{3}= \\
& \vdots \\
& \mathbf{v}_{p}=
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W, and

How to construct \mathbf{v}_{2} from \mathbf{x}_{2} and
$W_{1}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}\right\}$

How to construct \mathbf{v}_{3} from \mathbf{x}_{3} and $W_{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$

Example: Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, where $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]$. Construct an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for W.

Solution: $\mathbf{v}_{1}=\mathbf{x}_{1}$, and $\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=$ (since $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{x}_{2} \cdot \mathbf{v}_{1}=\quad$ and $\mathbf{v}_{1} \cdot \mathbf{v}_{1}=\quad$)

So, an orthogonal basis for W is:

Orthonormal Bases

An orthonormal basis can be constructed from an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ by \qquad (i.e., scaling) \qquad .

Example: Let $\mathbf{x}_{1}=\left[\begin{array}{r}3 \\ 1 \\ -1 \\ 3\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{r}-5 \\ 1 \\ 5 \\ 7\end{array}\right]$, and $\mathbf{x}_{3}=\left[\begin{array}{r}1 \\ 1 \\ -2 \\ 8\end{array}\right]$, and let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$.
(a) How could we show that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is a basis for W, which is a subspace of \mathbb{R}^{4} ?
(b) Find an orthogonal basis for W.
$\mathbf{v}_{1}=\mathbf{x}_{1}$
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=$
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=$
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{r}3 \\ 1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}1 \\ 3 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{r}-3 \\ 1 \\ 1 \\ 3\end{array}\right]\right\}$ is an orthogonal basis for W.
(c) Find an orthonormal basis for W.

We need to normalize $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ to make an orthonormal basis $\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \mathbf{v}_{3}^{\prime}\right\}$:

$$
\mathbf{v}_{1}^{\prime}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\left[\begin{array}{c}
3 / \sqrt{20} \\
1 / \sqrt{20} \\
-1 / \sqrt{20} \\
3 / \sqrt{20}
\end{array}\right] \quad \mathbf{v}_{2}^{\prime}=\frac{1}{\left\|\mathbf{v}_{2}\right\|} \mathbf{v}_{2}=\quad \quad \mathbf{v}_{3}^{\prime}=
$$

$Q R$ Factorization of Matrices

If an $m \times n$ matrix A has linearly independent columns, then applying the Gram-Schmidt process (with normalizations) to the \qquad of A produces an extremely useful factorization for A.

Theorem 6.12: The QR Factorization

If A is an $m \times n$ matrix with \qquad columns, then A can be factored as
where:

- \qquad is an $m \times n$ matrix whose columns form an \qquad basis for
$\operatorname{Col} A$, and
\qquad is an $n \times n$ \qquad matrix with positive entries on its diagonal.

Note: If the columns of Q form an orthonormal basis for $\operatorname{Col} A$, then

$$
Q^{T} Q=
$$

Therefore, we can find R by

$$
R=I R=Q^{T}(Q R)=Q^{T} A
$$

