Learning Objectives

- Understand how to find the orthogonal projection of a vector in \mathbb{R}^n onto a subspace
- Understand how to find the closest point in a subspace W to a vector in \mathbb{R}^n
- Understand how to find the distance from a subspace to a vector in \mathbb{R}^n

Orthogonal Projections

Theorem 6.8: The Orthogonal Decomposition Theorem Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be uniquely represented in the form

 $\mathbf{y} =$ where _____ is in W and ______ is in W^{\perp} .

In fact, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthogonal basis of W, then

Remark: This decomposition is easy if we have an _

We will discover in Section 6.4 that every nonzero subspace of \mathbb{R}^n has an _____

_____, and learn how to construct one.

Example: Let $\mathbf{u}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$. Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Properties of Orthogonal Projections

Theorem 6.9: The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , \mathbf{y} be any vector in \mathbb{R}^n , and $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the ______ in W to \mathbf{y} , in the sense that

for all $\mathbf{v} \neq \hat{\mathbf{y}}$ in W.

Proof: Use the Pythagorean Theorem.

Remarks:

- The vector $\hat{\mathbf{y}}$ in Theorem 6.9 is called the **best approximation to** _____ by elements of
- If \mathbf{y} is in W, then $\mathbf{\hat{y}} =$ _____.

_.

If we need to replace a vector y with a vector v in W, then error is minimized when v = ____.

Theorem 6.10: If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then $\operatorname{proj}_W \mathbf{y} =$ If $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_p \end{bmatrix}$, then $\operatorname{proj}_W \mathbf{y} =$ for all \mathbf{y} in \mathbb{R}^n .