Learning Objectives

- Understand how to find the orthogonal projection of a vector in \mathbb{R}^{n} onto a subspace
- Understand how to find the closest point in a subspace W to a vector in \mathbb{R}^{n}
- Understand how to find the distance from a subspace to a vector in \mathbb{R}^{n}

Orthogonal Projections

Theorem 6.8: The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be uniquely represented in the form

$$
\mathbf{y}=\quad \text { where } \quad \text { is in } W \text { and ___ is in } W^{\perp} .
$$

In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis of W, then

Remark: This decomposition is easy if we have an \qquad .
We will discover in Section 6.4 that every nonzero subspace of \mathbb{R}^{n} has an \qquad
\qquad , and learn how to construct one.

Example: Let $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{c}0 \\ 3 \\ 10\end{array}\right]$. Observe that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Definition: The vector $\hat{\mathbf{y}}$ in Theorem 6.8 is called the orthogonal
of \qquad onto \qquad , and often is written as \qquad . (See picture above.)

Properties of Orthogonal Projections

Theorem 6.9: The Best Approximation Theorem

Let W be a subspace of $\mathbb{R}^{n}, \mathbf{y}$ be any vector in \mathbb{R}^{n}, and $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the \qquad in W to \mathbf{y}, in the sense that

$$
\text { for all } \mathbf{v} \neq \hat{\mathbf{y}} \text { in } W \text {. }
$$

Proof: Use the Pythagorean Theorem.

Remarks:

- The vector $\hat{\mathbf{y}}$ in Theorem 6.9 is called the best approximation to \qquad by elements of
\qquad .
- If \mathbf{y} is in W, then $\hat{\mathbf{y}}=$ \qquad .
- If we need to replace a vector \mathbf{y} with a vector \mathbf{v} in W, then error is minimized when $\mathbf{v}=$ \qquad .

Theorem 6.10: If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\operatorname{proj}_{W} \mathbf{y}=
$$

If $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then

$$
\operatorname{proj}_{W} \mathbf{y}=\quad \text { for all } \mathbf{y} \text { in } \mathbb{R}^{n}
$$

