Learning Objectives

- Determine whether a set is orthogonal
- Understand how to decompose a vector in \mathbb{R}^{n} into orthogonal components
- Determine whether a set is orthonormal

Orthogonal Sets

Definition: A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is an orthogonal set if each pair of from the set is \qquad , that is, if \qquad whenever $i \neq j$.

Example: Determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal set, where

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Theorem 6.4: If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n} and $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$, then S is \qquad and hence is a
\qquad for W.

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an \qquad .

Why Having an Orthogonal Basis is Nice

Example: Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n} and \mathbf{y} be a vector in W. Find weights c_{1}, \ldots, c_{p} such that

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}
$$

Theorem 6.5: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each \mathbf{y} in W, the weights in the linear combination

$$
\mathrm{y}=
$$

are given by

$$
c_{j}=
$$

Example: From the example on page 1 and Theorem 6.4, we have that $S=\left\{\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is an orthogonal basis for \mathbb{R}^{3}. Express the vector $\mathbf{y}=\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ as a linear combination of the vectors in S.

Orthogonal Projections

Let \mathbf{u} be a nonzero vector in \mathbb{R}^{n}, and suppose we want to write a vector \mathbf{y} in \mathbb{R}^{n} as

$$
\mathbf{y}=(\text { a scalar multiple of } \mathbf{u})+(\text { a scalar multiple of a vector orthogonal to } \mathbf{u})
$$

Thus, we want to write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, where $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some scalar α and \mathbf{z} is orthogonal to \mathbf{u}.

Our goal is to find α.

Note: The vector $\hat{\mathbf{y}}$ is called the \qquad of y onto u .

The vector \mathbf{z} is called the component of \mathbf{y} \qquad to u.

Orthonormal Sets

Definition: A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is called an orthonormal set if it is an orthogonal set of \qquad . If $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$, then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal for W.

Example: Let $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$ where $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set in \mathbb{R}^{m}. Compute $U^{T} U$.

Theorem 6.6: An $m \times n$ matrix U has orthonormal columns if and only if
\qquad -

Theorem 6.7: Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be vectors in \mathbb{R}^{n}. Then
(a) $\|U \mathbf{x}\|=$
(b) $(U \mathbf{x}) \cdot(U \mathbf{y})=$
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if

Definition: An orthogonal matrix is a square invertible matrix U such that
\qquad . Such a matrix has \qquad columns.

Warning: A better name for this would have been orthonormal matrix, but we are stuck with the terminology.

