Learning Objectives

- Determine whether a set is orthogonal
- Understand how to decompose a vector in \mathbb{R}^n into orthogonal components
- Determine whether a set is orthonormal

Orthogonal Sets

Definition: A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in \mathbb{R}^n is an **orthogonal set** if each pair of from the set is ______, that is, if ______ whenever $i \neq j$.

Example: Determine if $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where

$$\mathbf{u}_1 = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$$

Theorem 6.4: If $S = {\mathbf{u}_1, \dots, \mathbf{u}_p}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n and $W = \text{Span} {\mathbf{u}_1, \dots, \mathbf{u}_p}$, then S is ______ and hence is a ______ for W.

Definition: An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an _____.

Why Having an Orthogonal Basis is Nice

Example: Let $S = {\mathbf{u}_1, \ldots, \mathbf{u}_p}$ be an orthogonal basis for a subspace W of \mathbb{R}^n and \mathbf{y} be a vector in W. Find weights c_1, \ldots, c_p such that

 $\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p.$

Theorem 6.5: Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

 $\mathbf{y} =$

are given by

 $c_j =$

Example: From the example on page 1 and Theorem 6.4, we have that $S = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is an orthogonal basis for \mathbb{R}^3 . Express the vector $\mathbf{y} = \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ as a linear combination of the vectors in S.

Orthogonal Projections

Let **u** be a nonzero vector in \mathbb{R}^n , and suppose we want to write a vector **y** in \mathbb{R}^n as

 $\mathbf{y} = (a \text{ scalar multiple of } \mathbf{u}) + (a \text{ scalar multiple of a vector orthogonal to } \mathbf{u})$

Thus, we want to write $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is orthogonal to \mathbf{u} .

Note: The vector $\hat{\mathbf{y}}$ is called the _____ of \mathbf{y} onto \mathbf{u} .

The vector \mathbf{z} is called the **component of y** _____ **to u**.

Orthonormal Sets

Definition: A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in \mathbb{R}^n is called an **orthonormal set** if it is an orthogonal set of ______. If $W = \text{Span} \{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$, then $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an **orthonormal** ______ for W.

Example: Let $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$ where $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set in \mathbb{R}^m .

Compute $U^T U$.

Theorem 6.6: An $m \times n$ matrix U has orthonormal columns if and only if

Theorem 6.7: Let U be an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be vectors in \mathbb{R}^n . Then

(a) $||U\mathbf{x}|| =$

(b) $(U\mathbf{x}) \cdot (U\mathbf{y}) =$

(c) $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if

Definition: An **orthogonal matrix** is a square invertible matrix U such that _____. Such a matrix has ______ columns.

Warning: A better name for this would have been *orthonormal matrix*, but we are stuck with the terminology.